Cargando…
Direct learning-based deep spiking neural networks: a review
The spiking neural network (SNN), as a promising brain-inspired computational model with binary spike information transmission mechanism, rich spatially-temporal dynamics, and event-driven characteristics, has received extensive attention. However, its intricately discontinuous spike mechanism bring...
Autores principales: | Guo, Yufei, Huang, Xuhui, Ma, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313197/ https://www.ncbi.nlm.nih.gov/pubmed/37397460 http://dx.doi.org/10.3389/fnins.2023.1209795 |
Ejemplares similares
-
Back-Propagation Learning in Deep Spike-By-Spike Networks
por: Rotermund, David, et al.
Publicado: (2019) -
Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks
por: Guo, Yilong, et al.
Publicado: (2019) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020) -
Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks
por: Schmidgall, Samuel, et al.
Publicado: (2023) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016)