Cargando…
Analyzing fulminant myocarditis research trends and characteristics using the follower-leading clustering algorithm (FLCA): A bibliometric study
Myocarditis can be classified into 2 categories: fulminant myocarditis (FM) and nonfulminant myocarditis. FM is the most severe type, characterized by its acute and explosive nature, posing a sudden and life-threatening risk with a high fatality rate. Limited research has been conducted on FM charac...
Autores principales: | Yen, Pei-Chun, Chou, Willy, Chien, Tsair-Wei, Jen, Tung-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313307/ https://www.ncbi.nlm.nih.gov/pubmed/37390236 http://dx.doi.org/10.1097/MD.0000000000034169 |
Ejemplares similares
-
Visual impact beam plots: Analyzing research profiles and bibliometric metrics using the following-leading clustering algorithm (FLCA)
por: Cheng, Yung-Ze, et al.
Publicado: (2023) -
A comprehensive approach for clustering analysis using follower-leading clustering algorithm (FLCA): Bibliometric analysis
por: Cheng, Teng-Yun, et al.
Publicado: (2023) -
A modern approach with follower-leading clustering algorithm for visualizing author collaborations and article themes in skin cancer research: A bibliometric analysis
por: Lai, Po-Chih, et al.
Publicado: (2023) -
A leading bibliometric author does not have a dominant contribution to research based on the CJAL score: Bibliometric analysis
por: Tam, Hon-Pheng, et al.
Publicado: (2023) -
Analyzing the number of articles with network meta-analyses using chord diagrams and temporal heatmaps over the past 10 years: Bibliometric analysis
por: Liang, Yu-Erh, et al.
Publicado: (2023)