Cargando…
Probing lithium mobility at a solid electrolyte surface
Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation(1,2). However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity....
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313518/ https://www.ncbi.nlm.nih.gov/pubmed/37106132 http://dx.doi.org/10.1038/s41563-023-01535-y |
_version_ | 1785067143611547648 |
---|---|
author | Woodahl, Clarisse Jamnuch, Sasawat Amado, Angelique Uzundal, Can B. Berger, Emma Manset, Paul Zhu, Yisi Li, Yan Fong, Dillon D. Connell, Justin G. Hirata, Yasuyuki Kubota, Yuya Owada, Shigeki Tono, Kensuke Yabashi, Makina te Velthuis, Suzanne G. E. Tepavcevic, Sanja Matsuda, Iwao Drisdell, Walter S. Schwartz, Craig P. Freeland, John W. Pascal, Tod A. Zong, Alfred Zuerch, Michael |
author_facet | Woodahl, Clarisse Jamnuch, Sasawat Amado, Angelique Uzundal, Can B. Berger, Emma Manset, Paul Zhu, Yisi Li, Yan Fong, Dillon D. Connell, Justin G. Hirata, Yasuyuki Kubota, Yuya Owada, Shigeki Tono, Kensuke Yabashi, Makina te Velthuis, Suzanne G. E. Tepavcevic, Sanja Matsuda, Iwao Drisdell, Walter S. Schwartz, Craig P. Freeland, John W. Pascal, Tod A. Zong, Alfred Zuerch, Michael |
author_sort | Woodahl, Clarisse |
collection | PubMed |
description | Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation(1,2). However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 s state to hybridized Li-s/Ti-d orbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions. |
format | Online Article Text |
id | pubmed-10313518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-103135182023-07-02 Probing lithium mobility at a solid electrolyte surface Woodahl, Clarisse Jamnuch, Sasawat Amado, Angelique Uzundal, Can B. Berger, Emma Manset, Paul Zhu, Yisi Li, Yan Fong, Dillon D. Connell, Justin G. Hirata, Yasuyuki Kubota, Yuya Owada, Shigeki Tono, Kensuke Yabashi, Makina te Velthuis, Suzanne G. E. Tepavcevic, Sanja Matsuda, Iwao Drisdell, Walter S. Schwartz, Craig P. Freeland, John W. Pascal, Tod A. Zong, Alfred Zuerch, Michael Nat Mater Letter Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation(1,2). However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 s state to hybridized Li-s/Ti-d orbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions. Nature Publishing Group UK 2023-04-27 2023 /pmc/articles/PMC10313518/ /pubmed/37106132 http://dx.doi.org/10.1038/s41563-023-01535-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Letter Woodahl, Clarisse Jamnuch, Sasawat Amado, Angelique Uzundal, Can B. Berger, Emma Manset, Paul Zhu, Yisi Li, Yan Fong, Dillon D. Connell, Justin G. Hirata, Yasuyuki Kubota, Yuya Owada, Shigeki Tono, Kensuke Yabashi, Makina te Velthuis, Suzanne G. E. Tepavcevic, Sanja Matsuda, Iwao Drisdell, Walter S. Schwartz, Craig P. Freeland, John W. Pascal, Tod A. Zong, Alfred Zuerch, Michael Probing lithium mobility at a solid electrolyte surface |
title | Probing lithium mobility at a solid electrolyte surface |
title_full | Probing lithium mobility at a solid electrolyte surface |
title_fullStr | Probing lithium mobility at a solid electrolyte surface |
title_full_unstemmed | Probing lithium mobility at a solid electrolyte surface |
title_short | Probing lithium mobility at a solid electrolyte surface |
title_sort | probing lithium mobility at a solid electrolyte surface |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313518/ https://www.ncbi.nlm.nih.gov/pubmed/37106132 http://dx.doi.org/10.1038/s41563-023-01535-y |
work_keys_str_mv | AT woodahlclarisse probinglithiummobilityatasolidelectrolytesurface AT jamnuchsasawat probinglithiummobilityatasolidelectrolytesurface AT amadoangelique probinglithiummobilityatasolidelectrolytesurface AT uzundalcanb probinglithiummobilityatasolidelectrolytesurface AT bergeremma probinglithiummobilityatasolidelectrolytesurface AT mansetpaul probinglithiummobilityatasolidelectrolytesurface AT zhuyisi probinglithiummobilityatasolidelectrolytesurface AT liyan probinglithiummobilityatasolidelectrolytesurface AT fongdillond probinglithiummobilityatasolidelectrolytesurface AT connelljusting probinglithiummobilityatasolidelectrolytesurface AT hiratayasuyuki probinglithiummobilityatasolidelectrolytesurface AT kubotayuya probinglithiummobilityatasolidelectrolytesurface AT owadashigeki probinglithiummobilityatasolidelectrolytesurface AT tonokensuke probinglithiummobilityatasolidelectrolytesurface AT yabashimakina probinglithiummobilityatasolidelectrolytesurface AT tevelthuissuzannege probinglithiummobilityatasolidelectrolytesurface AT tepavcevicsanja probinglithiummobilityatasolidelectrolytesurface AT matsudaiwao probinglithiummobilityatasolidelectrolytesurface AT drisdellwalters probinglithiummobilityatasolidelectrolytesurface AT schwartzcraigp probinglithiummobilityatasolidelectrolytesurface AT freelandjohnw probinglithiummobilityatasolidelectrolytesurface AT pascaltoda probinglithiummobilityatasolidelectrolytesurface AT zongalfred probinglithiummobilityatasolidelectrolytesurface AT zuerchmichael probinglithiummobilityatasolidelectrolytesurface |