Cargando…

Probing lithium mobility at a solid electrolyte surface

Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation(1,2). However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity....

Descripción completa

Detalles Bibliográficos
Autores principales: Woodahl, Clarisse, Jamnuch, Sasawat, Amado, Angelique, Uzundal, Can B., Berger, Emma, Manset, Paul, Zhu, Yisi, Li, Yan, Fong, Dillon D., Connell, Justin G., Hirata, Yasuyuki, Kubota, Yuya, Owada, Shigeki, Tono, Kensuke, Yabashi, Makina, te Velthuis, Suzanne G. E., Tepavcevic, Sanja, Matsuda, Iwao, Drisdell, Walter S., Schwartz, Craig P., Freeland, John W., Pascal, Tod A., Zong, Alfred, Zuerch, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313518/
https://www.ncbi.nlm.nih.gov/pubmed/37106132
http://dx.doi.org/10.1038/s41563-023-01535-y
_version_ 1785067143611547648
author Woodahl, Clarisse
Jamnuch, Sasawat
Amado, Angelique
Uzundal, Can B.
Berger, Emma
Manset, Paul
Zhu, Yisi
Li, Yan
Fong, Dillon D.
Connell, Justin G.
Hirata, Yasuyuki
Kubota, Yuya
Owada, Shigeki
Tono, Kensuke
Yabashi, Makina
te Velthuis, Suzanne G. E.
Tepavcevic, Sanja
Matsuda, Iwao
Drisdell, Walter S.
Schwartz, Craig P.
Freeland, John W.
Pascal, Tod A.
Zong, Alfred
Zuerch, Michael
author_facet Woodahl, Clarisse
Jamnuch, Sasawat
Amado, Angelique
Uzundal, Can B.
Berger, Emma
Manset, Paul
Zhu, Yisi
Li, Yan
Fong, Dillon D.
Connell, Justin G.
Hirata, Yasuyuki
Kubota, Yuya
Owada, Shigeki
Tono, Kensuke
Yabashi, Makina
te Velthuis, Suzanne G. E.
Tepavcevic, Sanja
Matsuda, Iwao
Drisdell, Walter S.
Schwartz, Craig P.
Freeland, John W.
Pascal, Tod A.
Zong, Alfred
Zuerch, Michael
author_sort Woodahl, Clarisse
collection PubMed
description Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation(1,2). However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 s state to hybridized Li-s/Ti-d orbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions.
format Online
Article
Text
id pubmed-10313518
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-103135182023-07-02 Probing lithium mobility at a solid electrolyte surface Woodahl, Clarisse Jamnuch, Sasawat Amado, Angelique Uzundal, Can B. Berger, Emma Manset, Paul Zhu, Yisi Li, Yan Fong, Dillon D. Connell, Justin G. Hirata, Yasuyuki Kubota, Yuya Owada, Shigeki Tono, Kensuke Yabashi, Makina te Velthuis, Suzanne G. E. Tepavcevic, Sanja Matsuda, Iwao Drisdell, Walter S. Schwartz, Craig P. Freeland, John W. Pascal, Tod A. Zong, Alfred Zuerch, Michael Nat Mater Letter Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation(1,2). However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 s state to hybridized Li-s/Ti-d orbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions. Nature Publishing Group UK 2023-04-27 2023 /pmc/articles/PMC10313518/ /pubmed/37106132 http://dx.doi.org/10.1038/s41563-023-01535-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Letter
Woodahl, Clarisse
Jamnuch, Sasawat
Amado, Angelique
Uzundal, Can B.
Berger, Emma
Manset, Paul
Zhu, Yisi
Li, Yan
Fong, Dillon D.
Connell, Justin G.
Hirata, Yasuyuki
Kubota, Yuya
Owada, Shigeki
Tono, Kensuke
Yabashi, Makina
te Velthuis, Suzanne G. E.
Tepavcevic, Sanja
Matsuda, Iwao
Drisdell, Walter S.
Schwartz, Craig P.
Freeland, John W.
Pascal, Tod A.
Zong, Alfred
Zuerch, Michael
Probing lithium mobility at a solid electrolyte surface
title Probing lithium mobility at a solid electrolyte surface
title_full Probing lithium mobility at a solid electrolyte surface
title_fullStr Probing lithium mobility at a solid electrolyte surface
title_full_unstemmed Probing lithium mobility at a solid electrolyte surface
title_short Probing lithium mobility at a solid electrolyte surface
title_sort probing lithium mobility at a solid electrolyte surface
topic Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313518/
https://www.ncbi.nlm.nih.gov/pubmed/37106132
http://dx.doi.org/10.1038/s41563-023-01535-y
work_keys_str_mv AT woodahlclarisse probinglithiummobilityatasolidelectrolytesurface
AT jamnuchsasawat probinglithiummobilityatasolidelectrolytesurface
AT amadoangelique probinglithiummobilityatasolidelectrolytesurface
AT uzundalcanb probinglithiummobilityatasolidelectrolytesurface
AT bergeremma probinglithiummobilityatasolidelectrolytesurface
AT mansetpaul probinglithiummobilityatasolidelectrolytesurface
AT zhuyisi probinglithiummobilityatasolidelectrolytesurface
AT liyan probinglithiummobilityatasolidelectrolytesurface
AT fongdillond probinglithiummobilityatasolidelectrolytesurface
AT connelljusting probinglithiummobilityatasolidelectrolytesurface
AT hiratayasuyuki probinglithiummobilityatasolidelectrolytesurface
AT kubotayuya probinglithiummobilityatasolidelectrolytesurface
AT owadashigeki probinglithiummobilityatasolidelectrolytesurface
AT tonokensuke probinglithiummobilityatasolidelectrolytesurface
AT yabashimakina probinglithiummobilityatasolidelectrolytesurface
AT tevelthuissuzannege probinglithiummobilityatasolidelectrolytesurface
AT tepavcevicsanja probinglithiummobilityatasolidelectrolytesurface
AT matsudaiwao probinglithiummobilityatasolidelectrolytesurface
AT drisdellwalters probinglithiummobilityatasolidelectrolytesurface
AT schwartzcraigp probinglithiummobilityatasolidelectrolytesurface
AT freelandjohnw probinglithiummobilityatasolidelectrolytesurface
AT pascaltoda probinglithiummobilityatasolidelectrolytesurface
AT zongalfred probinglithiummobilityatasolidelectrolytesurface
AT zuerchmichael probinglithiummobilityatasolidelectrolytesurface