Cargando…

Micro-architecture design exploration template for AutoML case study on SqueezeSEMAuto

Convolutional Neural Network (CNN) models have been commonly used primarily in image recognition tasks in the deep learning area. Finding the right architecture needs a lot of hand-tune experiments which are time-consuming. In this paper, we exploit an AutoML framework that adds to the exploration o...

Descripción completa

Detalles Bibliográficos
Autores principales: Chantrapornchai, Chantana, Kajkamhaeng, Supasit, Romphet, Phattharaphon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313661/
https://www.ncbi.nlm.nih.gov/pubmed/37391458
http://dx.doi.org/10.1038/s41598-023-37682-0
Descripción
Sumario:Convolutional Neural Network (CNN) models have been commonly used primarily in image recognition tasks in the deep learning area. Finding the right architecture needs a lot of hand-tune experiments which are time-consuming. In this paper, we exploit an AutoML framework that adds to the exploration of the micro-architecture block and the multi-input option. The proposed adaption has been applied to SqueezeNet with SE blocks combined with the residual block combinations. The experiments assume three search strategies: Random, Hyperband, and Bayesian algorithms. Such combinations can lead to solutions with superior accuracy while the model size can be monitored. We demonstrate the application of the approach against benchmarks: CIFAR-10 and Tsinghua Facial Expression datasets. The searches allow the designer to find the architectures with better accuracy than the traditional architectures without hand-tune efforts. For example, CIFAR-10, leads to the SqueezeNet architecture using only 4 fire modules with 59% accuracy. When exploring SE block insertion, the model with good insertion points can lead to an accuracy of 78% while the traditional SqueezeNet can achieve an accuracy of around 50%. For other tasks, such as facial expression recognition, the proposed approach can lead up to an accuracy of 71% with the proper insertion of SE blocks, the appropriate number of fire modules, and adequate input merging, while the traditional model can achieve the accuracy under 20%.