Cargando…

Effects of propolis-loaded nanoliposomes fortification in extender on buffalo semen cryopreservation

Buffalo sperm is sensitive to cryoinjuries, thus improving sperm cryoresistance is a critical approach for wide spreading the assisted reproductive technologies in buffalo. The intention of this work was to assess the effect of propolis-loaded in nanoliposomes (PRNL) supplementation of semen extende...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdelnour, Sameh A., Hassan, Mahmoud A. E., Shehabeldin, Ahmed. M., Omar, Mohamed. E. A., Khalil, Wael A., Aman, Reham Mokhtar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313678/
https://www.ncbi.nlm.nih.gov/pubmed/37391447
http://dx.doi.org/10.1038/s41598-023-37424-2
Descripción
Sumario:Buffalo sperm is sensitive to cryoinjuries, thus improving sperm cryoresistance is a critical approach for wide spreading the assisted reproductive technologies in buffalo. The intention of this work was to assess the effect of propolis-loaded in nanoliposomes (PRNL) supplementation of semen extender on semen quality, antioxidant status and some apoptotic genes of cryopreserved buffalo semen. PRNL were prepared using cholesterol (Chol) as well as soybean lecithin and their physicochemical properties were characterized. Egyptian buffalo bulls (4–6 years) were involved, and the semen samples were collected using the artificial vagina method. Buffalo semen was pooled (n = 25 ejaculates) and cryopreserved in tris extender containing PRNL at 0 (PRNL0), 2 (PRNL2), 4 (PRNL4) and 6 µg/mL (PRNL6), respectively. The PRNL had a size of 113.13 nm and a negative zeta potential (− 56.83 mV). Sperm progressive motility, viability, membrane integrity, abnormalities, chromatin damage, redox status, apoptosis status, and apoptotic genes were investigated after post-thawed buffalo semen. Using 2 or 4 µg/mL PRNL significantly increased sperm progressive motility, viability, and membrane integrity, while sperm abnormalities and the percentage of chromatin damages were the lowest in PRNL2 group. Moreover, the PRNL2 group exhibited the best results for all antioxidative activities (TAC, SOD, GPx and CAT) with significantly higher levels than the other groups (P < 0.05). The levels of ROS and MDA were significantly lower in the PRLN2 compared with other groups. The sperm caspase 3 enzyme activities showed the lowest values in PRNL2 groups followed by PRNL4 and PRNL6 groups with significant differences compared with the control. Adding 2 µg/mL PRNL to freezing media significantly reduced apoptotic genes such as Bax and Caspase 3 in sperm, while significantly increase in Bcl2 expression compared with the control (P < 0.001). The expression of Bcl2, Caspase 3 and Bax genes in sperm were not affected by the 6 µg/mL PRNL addition (P > 0.05). The electron micrography descriptions exemplified that the fortification of 2 or 4 µg/mL PRNL maintained the acrosomal and plasma membrane integrities as well as sustained the ultrastructure integrity of the cryopreserved buffalo spermatozoa when compared with control group, whereas the 6 µg/mL of PRNL demonstrated highest injury to the acrosome and plasma membranes. Results show supplementation of the buffalo freezing extender with 2 or 4 µg/mL of PRNL enhanced post-thawed sperm quality via boosting the antioxidant indices, diminishing the oxidative stress and apoptosis as well as maintained the ultrastructure integrity of frozen-thawed buffalo sperm.