Cargando…
Generalized neural closure models with interpretability
Improving the predictive capability and computational cost of dynamical models is often at the heart of augmenting computational physics with machine learning (ML). However, most learning results are limited in interpretability and generalization over different computational grid resolutions, initia...
Autores principales: | Gupta, Abhinav, Lermusiaux, Pierre F. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313723/ https://www.ncbi.nlm.nih.gov/pubmed/37391424 http://dx.doi.org/10.1038/s41598-023-35319-w |
Ejemplares similares
-
Interpretable generalized neural additive models for mortality prediction of COVID-19 hospitalized patients in Hamadan, Iran
por: Moslehi, Samad, et al.
Publicado: (2022) -
Interpreting neural decoding models using grouped model reliance
por: Valentin, Simon, et al.
Publicado: (2020) -
Inositol, neural tube closure and the prevention of neural tube defects
por: Greene, Nicholas D.E., et al.
Publicado: (2017) -
General Categories of Cytologic Interpretation
por: Raskin, Rose E.
Publicado: (2010) -
General Categories of Cytologic Interpretation
por: Raskin, Rose E.
Publicado: (2016)