Cargando…
Machine learning in attention-deficit/hyperactivity disorder: new approaches toward understanding the neural mechanisms
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and heterogeneous neurodevelopmental disorder in children and has a high chance of persisting in adulthood. The development of individualized, efficient, and reliable treatment strategies is limited by the lack of understanding of...
Autores principales: | Cao, Meng, Martin, Elizabeth, Li, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313824/ https://www.ncbi.nlm.nih.gov/pubmed/37391419 http://dx.doi.org/10.1038/s41398-023-02536-w |
Ejemplares similares
-
Validity of Diagnostic Support Model for Attention Deficit Hyperactivity Disorder: A Machine Learning Approach
por: Chu, Kuo-Chung, et al.
Publicado: (2023) -
Evaluation of Knowledge and Attitude of Parents of Attention Deficit/Hyperactivity Disorder Children towards Attention Deficit/Hyperactivity Disorder in Clinical Samples
por: Dodangi, Nasrin, et al.
Publicado: (2017) -
Towards interpretable machine learning models for diagnosis aid: A case study on attention deficit/hyperactivity disorder
por: Itani, Sarah, et al.
Publicado: (2019) -
MEG Analysis of Neural Interactions in Attention-Deficit/Hyperactivity Disorder
por: Khadmaoui, Amine, et al.
Publicado: (2016) -
Altered neural flexibility in children with attention-deficit/hyperactivity disorder
por: Yin, Weiyan, et al.
Publicado: (2022)