Cargando…
External validation of the Manchester Acute Coronary Syndromes ECG risk model within a pre-hospital setting
OBJECTIVES: The Manchester Acute Coronary Syndromes ECG (MACS-ECG) prediction model calculates a score based on objective ECG measurements to give the probability of a non-ST elevation myocardial infarction (NSTEMI). The model showed good performance in the emergency department (ED), but its accurac...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313997/ https://www.ncbi.nlm.nih.gov/pubmed/37068929 http://dx.doi.org/10.1136/emermed-2022-212872 |
Sumario: | OBJECTIVES: The Manchester Acute Coronary Syndromes ECG (MACS-ECG) prediction model calculates a score based on objective ECG measurements to give the probability of a non-ST elevation myocardial infarction (NSTEMI). The model showed good performance in the emergency department (ED), but its accuracy in the pre-hospital setting is unknown. We aimed to externally validate MACS-ECG in the pre-hospital environment. METHODS: We undertook a secondary analysis from the Pre-hospital Evaluation of Sensitive Troponin (PRESTO) study, a multi-centre prospective study to validate decision aids in the pre-hospital setting (26 February 2019 to 23 March 2020). Patients with chest pain where the treating paramedic suspected acute coronary syndrome were included. Paramedics collected demographic and historical data and interpreted ECGs contemporaneously (as ‘normal’ or ‘abnormal’). After completing recruitment, we analysed ECGs to calculate the MACS-ECG score, using both a pre-defined threshold and a novel threshold that optimises sensitivity to differentiate AMI from non-AMI. This was compared with subjective ECG interpretation by paramedics. The diagnosis of AMI was adjudicated by two investigators based on serial troponin testing in hospital. RESULTS: Of 691 participants, 87 had type 1 AMI and 687 had complete data for paramedic ECG interpretation. The MACS-ECG model had a C-index of 0.68 (95% CI: 0.61 to 0.75). At the pre-determined cut-off, MACS-ECG had 2.3% (95% CI: 0.3% to 8.1%) sensitivity, 99.5% (95% CI: 98.6% to 99.9%) specificity, 40.0% (95% CI: 10.2% to 79.3%) positive predictive value (PPV) and 87.6% (87.3% to 88.0%) negative predictive value (NPV). At the optimal threshold for sensitivity, MACS-ECG had 50.6% sensitivity (39.6% to 61.5%), 83.1% specificity (79.9% to 86.0%), 30.1% PPV (24.7% to 36.2%) and 92.1% NPV (90.4% to 93.5%). In comparison, paramedics had a sensitivity of 71.3% (95% CI: 60.8% to 80.5%) with 53.8% (95% CI: 53.8% to 61.8%) specificity, 19.7% (17.2% to 22.45%) PPV and 93.3% (90.8% to 95.1%) NPV. CONCLUSION: Neither MACS-ECG nor paramedic ECG interpretation had a sufficiently high PPV or NPV to ‘rule in’ or ‘rule out’ NSTEMI alone. |
---|