Cargando…

Higher-order aberrations and their association with axial elongation in highly myopic children and adolescents

BACKGROUND: Vision-dependent mechanisms play a role in myopia progression in childhood. Thus, we investigated the distribution of ocular and corneal higher-order aberrations (HOAs) in highly myopic Chinese children and adolescents and the relationship between HOA components and 1-year axial eye grow...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yupeng, Deng, Junjie, Zhang, Bo, Xu, Xian, Cheng, Tianyu, Wang, Jingjing, Xiong, Shuyu, Luan, Mengli, Zou, Haidong, He, Xiangui, Tang, Chun, Xu, Xun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314045/
https://www.ncbi.nlm.nih.gov/pubmed/35027355
http://dx.doi.org/10.1136/bjophthalmol-2021-319769
Descripción
Sumario:BACKGROUND: Vision-dependent mechanisms play a role in myopia progression in childhood. Thus, we investigated the distribution of ocular and corneal higher-order aberrations (HOAs) in highly myopic Chinese children and adolescents and the relationship between HOA components and 1-year axial eye growth. METHODS: Baseline cycloplegic ocular and corneal HOAs, axial length (AL), spherical equivalent (SE), astigmatism and interpupillary distance (IPD) were determined for the right eyes of 458 highly myopic (SE ≤−5.0D) subjects. HOAs were compared among baseline age groups (≤12 years, 13–15 years and 16–18 years). Ninety-nine subjects completed the 1-year follow-up. Linear mixed model analyses were applied to determine the association between HOA components, other known confounding variables (age, gender, SE, astigmatism and IPD) and axial growth. A comparison with data from an early study of moderate myopia were conducted. RESULTS: Almost all ocular HOAs and few corneal HOAs exhibited significant differences between different age groups (all p<0.05). After 1 year, only ocular HOA components was significantly negative associated with a longer AL, including secondary horizontal comatic aberration (p=0.019), primary spherical aberration (p<0.001) and spherical HOA (p=0.026). Comparing with the moderate myopia data, the association of comatic aberration with AL growth was only found in high myopia. CONCLUSION: In highly myopic children and adolescents, lower levels of annual ocular secondary horizontal comatic aberration changes, besides spherical aberrations, were associated with axial elongation. This suggests that ocular HOA plays a potential role in refractive development in high myopia.