Cargando…
Ethanol as a switch to induce soybean lipophilic protein self-assembly and resveratrol delivery
Protein-based nanoparticles or nanocarriers of emulsion systems have piqued the interest of nutrition and health care goods. As a result, this work examines the characterisation of ethanol-induced soybean lipophilic protein (LP) self-assembly for resveratrol (Res) encapsulation, particularly the inf...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314170/ https://www.ncbi.nlm.nih.gov/pubmed/37397220 http://dx.doi.org/10.1016/j.fochx.2023.100698 |
Sumario: | Protein-based nanoparticles or nanocarriers of emulsion systems have piqued the interest of nutrition and health care goods. As a result, this work examines the characterisation of ethanol-induced soybean lipophilic protein (LP) self-assembly for resveratrol (Res) encapsulation, particularly the influence on emulsification. By varying the ethanol content ([E]) in the range of 0–70% (v/v), the structure, size, and morphology of LP nanoparticles may be adjusted. Similarly, the self-assembled LPs have a strong [E] dependency on the encapsulation efficiency of Res. For [E] = 40% (v/v), Res had the highest encapsulation efficiency (EE) and load capacity (LC) of 97.1% and 141.0 μg/mg nanoparticles, respectively. Most of the Res was encapsulated by the hydrophobic core of LP. Moreover, for [E] = 40% (v/v), LP-Res showed significantly improved emulsifying properties, independent of low-oil or high-oil emulsion systems. Furthermore, the ethanol-induced production of appropriate aggregates increased emulsion system stability, hence increasing Res retention during storage. |
---|