Cargando…
Improving accelerated 3D imaging in MRI-guided radiotherapy for prostate cancer using a deep learning method
PURPOSE: This study was to improve image quality for high-speed MR imaging using a deep learning method for online adaptive radiotherapy in prostate cancer. We then evaluated its benefits on image registration. METHODS: Sixty pairs of 1.5 T MR images acquired with an MR-linac were enrolled. The data...
Autores principales: | Zhu, Ji, Chen, Xinyuan, Liu, Yuxiang, Yang, Bining, Wei, Ran, Qin, Shirui, Yang, Zhuanbo, Hu, Zhihui, Dai, Jianrong, Men, Kuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314402/ https://www.ncbi.nlm.nih.gov/pubmed/37393282 http://dx.doi.org/10.1186/s13014-023-02306-4 |
Ejemplares similares
-
Combining distance and anatomical information for deep-learning based dose distribution predictions for nasopharyngeal cancer radiotherapy planning
por: Chen, Xinyuan, et al.
Publicado: (2023) -
A more effective CT synthesizer using transformers for cone-beam CT-guided adaptive radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2022) -
Evaluation of Automatic Segmentation Model With Dosimetric Metrics for Radiotherapy of Esophageal Cancer
por: Zhu, Ji, et al.
Publicado: (2020) -
MRI-Only Radiotherapy Planning for Nasopharyngeal Carcinoma Using Deep Learning
por: Ma, Xiangyu, et al.
Publicado: (2021) -
A feasibility study on an automated method to generate patient‐specific dose distributions for radiotherapy using deep learning
por: Chen, Xinyuan, et al.
Publicado: (2018)