Cargando…
Kinetics of SARS-CoV-2 Serum Antibodies Through the Alpha, Delta, and Omicron Surges Among Vaccinated Health Care Workers at a Boston Hospital
BACKGROUND: Longitudinal serology studies can assist in analyzing the kinetics of antibodies to SARS-CoV-2, helping to inform public health decision making. Our study aims to characterize circulating antibody trends over 18 months in vaccinated participants with and without evidence of COVID-19 infe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314714/ https://www.ncbi.nlm.nih.gov/pubmed/37396669 http://dx.doi.org/10.1093/ofid/ofad266 |
Sumario: | BACKGROUND: Longitudinal serology studies can assist in analyzing the kinetics of antibodies to SARS-CoV-2, helping to inform public health decision making. Our study aims to characterize circulating antibody trends over 18 months in vaccinated participants with and without evidence of COVID-19 infection. METHODS: A cohort of health care workers employed at Boston Medical Center was followed to collect serum samples and survey data over 6 time points from July 2020 through December 2021 (N = 527). History of SARS-CoV-2 infection, vaccination, and booster status were confirmed, where possible, through electronic medical records. Serum was assessed for the qualitative and semiquantitative detection of IgG antibody levels (anti-nucleoprotein [anti-N] and anti-spike [anti-S], respectively). Piecewise regression models were utilized to characterize antibody kinetics over time. RESULTS: Anti-S IgG titers remained above the positivity threshold following infection and/or vaccination throughout the 18-month follow-up. Among participants with no evidence of COVID-19 infection, titers declined significantly faster in the initial 90 days after full vaccination (β = −0.056) from December 2020 to March 2021 as compared with the decline observed following booster dose uptake (β = −0.023, P < 0.001). Additionally, COVID-19 infection prior to vaccination significantly attenuated the decline of anti-S IgG when compared with no infection following vaccine uptake (P < 0.001). Lastly, fewer participants contracted Omicron when boosted (12.7%) compared to fully vaccinated (17.6%). Regardless of vaccination status, participants who were Omicron positive had lower anti-S IgG titers than those who did not test positive, but this difference was not significant. CONCLUSIONS: These findings provide novel 18-month kinetics of anti-S IgG antibodies and highlight the durability of hybrid immunity, underlining the strong humoral response stimulated by combined infection and vaccination. |
---|