Cargando…
Medical transformer for multimodal survival prediction in intensive care: integration of imaging and non-imaging data
When clinicians assess the prognosis of patients in intensive care, they take imaging and non-imaging data into account. In contrast, many traditional machine learning models rely on only one of these modalities, limiting their potential in medical applications. This work proposes and evaluates a tr...
Autores principales: | Khader, Firas, Kather, Jakob Nikolas, Müller-Franzes, Gustav, Wang, Tianci, Han, Tianyu, Tayebi Arasteh, Soroosh, Hamesch, Karim, Bressem, Keno, Haarburger, Christoph, Stegmaier, Johannes, Kuhl, Christiane, Nebelung, Sven, Truhn, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314902/ https://www.ncbi.nlm.nih.gov/pubmed/37393383 http://dx.doi.org/10.1038/s41598-023-37835-1 |
Ejemplares similares
-
A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis
por: Müller-Franzes, Gustav, et al.
Publicado: (2023) -
Denoising diffusion probabilistic models for 3D medical image generation
por: Khader, Firas, et al.
Publicado: (2023) -
Collaborative training of medical artificial intelligence models with non-uniform labels
por: Tayebi Arasteh, Soroosh, et al.
Publicado: (2023) -
Fibroglandular tissue segmentation in breast MRI using vision transformers: a multi-institutional evaluation
por: Müller-Franzes, Gustav, et al.
Publicado: (2023) -
Reliability as a Precondition for Trust—Segmentation Reliability Analysis of Radiomic Features Improves Survival Prediction
por: Müller-Franzes, Gustav, et al.
Publicado: (2022)