Cargando…

Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response

Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated ge...

Descripción completa

Detalles Bibliográficos
Autores principales: León, Marian, Prieto, Javier, Molina-Navarro, María Micaela, García-García, Francisco, Barneo-Muñoz, Manuela, Ponsoda, Xavier, Sáez, Rosana, Palau, Francesc, Dopazo, Joaquín, Izpisua Belmonte, Juan Carlos, Torres, Josema
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314916/
https://www.ncbi.nlm.nih.gov/pubmed/37393339
http://dx.doi.org/10.1038/s41420-023-01531-w
_version_ 1785067409731747840
author León, Marian
Prieto, Javier
Molina-Navarro, María Micaela
García-García, Francisco
Barneo-Muñoz, Manuela
Ponsoda, Xavier
Sáez, Rosana
Palau, Francesc
Dopazo, Joaquín
Izpisua Belmonte, Juan Carlos
Torres, Josema
author_facet León, Marian
Prieto, Javier
Molina-Navarro, María Micaela
García-García, Francisco
Barneo-Muñoz, Manuela
Ponsoda, Xavier
Sáez, Rosana
Palau, Francesc
Dopazo, Joaquín
Izpisua Belmonte, Juan Carlos
Torres, Josema
author_sort León, Marian
collection PubMed
description Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated gene GDAP1 encodes for a mitochondrial outer membrane protein. Mouse and insect models with mutations in Gdap1 have reproduced several traits of the human disease. However, the precise function in the cell types affected by the disease remains unknown. Here, we use induced-pluripotent stem cells derived from a Gdap1 knockout mouse model to better understand the molecular and cellular phenotypes of the disease caused by the loss-of-function of this gene. Gdap1-null motor neurons display a fragile cell phenotype prone to early degeneration showing (1) altered mitochondrial morphology, with an increase in the fragmentation of these organelles, (2) activation of autophagy and mitophagy, (3) abnormal metabolism, characterized by a downregulation of Hexokinase 2 and ATP5b proteins, (4) increased reactive oxygen species and elevated mitochondrial membrane potential, and (5) increased innate immune response and p38 MAP kinase activation. Our data reveals the existence of an underlying Redox-inflammatory axis fueled by altered mitochondrial metabolism in the absence of Gdap1. As this biochemical axis encompasses a wide variety of druggable targets, our results may have implications for developing therapies using combinatorial pharmacological approaches and improving therefore human welfare. [Figure: see text]
format Online
Article
Text
id pubmed-10314916
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-103149162023-07-03 Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response León, Marian Prieto, Javier Molina-Navarro, María Micaela García-García, Francisco Barneo-Muñoz, Manuela Ponsoda, Xavier Sáez, Rosana Palau, Francesc Dopazo, Joaquín Izpisua Belmonte, Juan Carlos Torres, Josema Cell Death Discov Article Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated gene GDAP1 encodes for a mitochondrial outer membrane protein. Mouse and insect models with mutations in Gdap1 have reproduced several traits of the human disease. However, the precise function in the cell types affected by the disease remains unknown. Here, we use induced-pluripotent stem cells derived from a Gdap1 knockout mouse model to better understand the molecular and cellular phenotypes of the disease caused by the loss-of-function of this gene. Gdap1-null motor neurons display a fragile cell phenotype prone to early degeneration showing (1) altered mitochondrial morphology, with an increase in the fragmentation of these organelles, (2) activation of autophagy and mitophagy, (3) abnormal metabolism, characterized by a downregulation of Hexokinase 2 and ATP5b proteins, (4) increased reactive oxygen species and elevated mitochondrial membrane potential, and (5) increased innate immune response and p38 MAP kinase activation. Our data reveals the existence of an underlying Redox-inflammatory axis fueled by altered mitochondrial metabolism in the absence of Gdap1. As this biochemical axis encompasses a wide variety of druggable targets, our results may have implications for developing therapies using combinatorial pharmacological approaches and improving therefore human welfare. [Figure: see text] Nature Publishing Group UK 2023-07-01 /pmc/articles/PMC10314916/ /pubmed/37393339 http://dx.doi.org/10.1038/s41420-023-01531-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
León, Marian
Prieto, Javier
Molina-Navarro, María Micaela
García-García, Francisco
Barneo-Muñoz, Manuela
Ponsoda, Xavier
Sáez, Rosana
Palau, Francesc
Dopazo, Joaquín
Izpisua Belmonte, Juan Carlos
Torres, Josema
Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response
title Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response
title_full Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response
title_fullStr Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response
title_full_unstemmed Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response
title_short Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response
title_sort rapid degeneration of ipsc-derived motor neurons lacking gdap1 engages a mitochondrial-sustained innate immune response
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314916/
https://www.ncbi.nlm.nih.gov/pubmed/37393339
http://dx.doi.org/10.1038/s41420-023-01531-w
work_keys_str_mv AT leonmarian rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT prietojavier rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT molinanavarromariamicaela rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT garciagarciafrancisco rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT barneomunozmanuela rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT ponsodaxavier rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT saezrosana rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT palaufrancesc rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT dopazojoaquin rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT izpisuabelmontejuancarlos rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse
AT torresjosema rapiddegenerationofipscderivedmotorneuronslackinggdap1engagesamitochondrialsustainedinnateimmuneresponse