Cargando…

Sarsasapogenin blocks ox-LDL-stimulated vascular smooth muscle cell proliferation, migration, and invasion through suppressing STIM1 expression

BACKGROUND: Atherosclerosis (AS) is a pathological vascular disorder responsible for the majority of cardiovascular deaths. Sarsasapogenin (Sar) is a natural steroidal compound which has been extensively applied to multiple human diseases due to its pharmacological properties. In the present paper,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhai, Haiying, Liu, Hongqin, Shang, Baoling, Zou, Xu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315424/
https://www.ncbi.nlm.nih.gov/pubmed/37405015
http://dx.doi.org/10.21037/cdt-23-111
Descripción
Sumario:BACKGROUND: Atherosclerosis (AS) is a pathological vascular disorder responsible for the majority of cardiovascular deaths. Sarsasapogenin (Sar) is a natural steroidal compound which has been extensively applied to multiple human diseases due to its pharmacological properties. In the present paper, the impacts of Sar on oxidized low-density lipoprotein (ox-LDL)-treated vascular smooth muscle cells (VSMCs) and its possible action mechanism were investigated. METHODS: Firstly, Cell Counting Kit-8 (CCK-8) estimated the viability of VSMCs following treatment with ascending doses of Sar. Then, VSMCs were treated by ox-LDL to stimulate an in vitro cell model of AS. CCK-8 and 5-Ethynyl-2’-deoxyuridine (EDU) assays were used to assess cell proliferation. Wound healing and transwell assays were applied to measure the migratory and invasive capacities, respectively. The expression of proliferation-, metastasis-, and stromal interaction molecule 1 (STIM1)/Orai signaling-associated proteins was measured by western blot. RESULTS: The experimental data illuminated that Sar treatment noticeably protected against ox-LDL-elicited VSMCs proliferation, migration, and invasion. Besides, Sar lowered the elevated STIM1 and Orai expression in ox-LDL-treated VSMCs. Further, STIM1 elevation partially abrogated the impacts of Sar on the proliferation, migration, and invasion of VSMCs challenged with ox-LDL. CONCLUSIONS: In conclusion, Sar might reduce STIM1 expression to impede the aggressive phenotypes of ox-LDL-treated VSMCs.