Cargando…
Integrating machine learning algorithms to systematically assess reactive oxygen species levels to aid prognosis and novel treatments for triple -negative breast cancer patients
INTRODUCTION: Breast cancer has become one of the top health concerns for women, and triple-negative breast cancer (TNBC) leads to treatment resistance and poor prognosis due to its high degree of heterogeneity and malignancy. Reactive oxygen species (ROS) have been found to play a dual role in tumo...
Autores principales: | Li, Juan, Liang, Yu, Zhao, Xiaochen, Wu, Chihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315494/ https://www.ncbi.nlm.nih.gov/pubmed/37404810 http://dx.doi.org/10.3389/fimmu.2023.1196054 |
Ejemplares similares
-
A Machine Learning Model to Predict the Triple Negative Breast Cancer Immune Subtype
por: Chen, Zihao, et al.
Publicado: (2021) -
Reactive Oxygen Species in Macrophages: Sources and Targets
por: Canton, Marcella, et al.
Publicado: (2021) -
Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity
por: Peng, Hao-Yun, et al.
Publicado: (2021) -
Editorial: The Role of Reactive Oxygen Species in Protective Immunity
por: Martinvalet, Denis, et al.
Publicado: (2022) -
Identification of necroptosis-related subtypes and prognosis model in triple negative breast cancer
por: Pu, Shengyu, et al.
Publicado: (2022)