Cargando…
A semi-independent policies training method with shared representation for heterogeneous multi-agents reinforcement learning
Humans do not learn everything from the scratch but can connect and associate the upcoming information with the exchanged experience and known knowledge. Such an idea can be extended to cooperated multi-reinforcement learning and has achieved its success on homogeneous agents by means of parameter s...
Autores principales: | Zhao, Biao, Jin, Weiqiang, Chen, Zhang, Guo, Yucheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315621/ https://www.ncbi.nlm.nih.gov/pubmed/37404464 http://dx.doi.org/10.3389/fnins.2023.1201370 |
Ejemplares similares
-
A parallel heterogeneous policy deep reinforcement learning algorithm for bipedal walking motion design
por: Li, Chunguang, et al.
Publicado: (2023) -
Time representation in reinforcement learning models of the basal ganglia
por: Gershman, Samuel J., et al.
Publicado: (2014) -
Investigation of independent reinforcement learning algorithms in multi-agent environments
por: Lee, Ken Ming, et al.
Publicado: (2022) -
Multi-Agent Reinforcement Learning via Adaptive Kalman Temporal Difference and Successor Representation
por: Salimibeni, Mohammad, et al.
Publicado: (2022) -
Multi-Task Network Representation Learning
por: Xie, Yu, et al.
Publicado: (2020)