Cargando…

A semi-independent policies training method with shared representation for heterogeneous multi-agents reinforcement learning

Humans do not learn everything from the scratch but can connect and associate the upcoming information with the exchanged experience and known knowledge. Such an idea can be extended to cooperated multi-reinforcement learning and has achieved its success on homogeneous agents by means of parameter s...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Biao, Jin, Weiqiang, Chen, Zhang, Guo, Yucheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315621/
https://www.ncbi.nlm.nih.gov/pubmed/37404464
http://dx.doi.org/10.3389/fnins.2023.1201370

Ejemplares similares