Cargando…

Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research

Gaining a mechanistic understanding of the molecular pathways underpinning cellular and organismal physiology invariably relies on the perturbation of an experimental system to infer causality. This can be achieved either by genetic manipulation or by pharmacological treatment. Generally, the former...

Descripción completa

Detalles Bibliográficos
Autores principales: Giandomenico, Stefano L., Schuman, Erin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315748/
https://www.ncbi.nlm.nih.gov/pubmed/36815235
http://dx.doi.org/10.1002/2211-5463.13581
_version_ 1785067564395659264
author Giandomenico, Stefano L.
Schuman, Erin M.
author_facet Giandomenico, Stefano L.
Schuman, Erin M.
author_sort Giandomenico, Stefano L.
collection PubMed
description Gaining a mechanistic understanding of the molecular pathways underpinning cellular and organismal physiology invariably relies on the perturbation of an experimental system to infer causality. This can be achieved either by genetic manipulation or by pharmacological treatment. Generally, the former approach is applicable to a wider range of targets, is more precise, and can address more nuanced functional aspects. Despite such apparent advantages, genetic manipulation (i.e., knock‐down, knock‐out, mutation, and tagging) in mammalian systems can be challenging due to problems with delivery, low rates of homologous recombination, and epigenetic silencing. The advent of CRISPR‐Cas9 in combination with the development of robust differentiation protocols that can efficiently generate a variety of different cell types in vitro has accelerated our ability to probe gene function in a more physiological setting. Often, the main obstacle in this path of enquiry is to achieve the desired genetic modification. In this short review, we will focus on gene perturbation in mammalian cells and how editing and differentiation of pluripotent stem cells can complement more traditional approaches. Additionally, we introduce novel targeted protein degradation approaches as an alternative to DNA/RNA‐based manipulation. Our aim is to present a broad overview of recent approaches and in vitro systems to study mammalian cell biology. Due to space limitations, we limit ourselves to providing the inexperienced reader with a conceptual framework on how to use these tools, and for more in‐depth information, we will provide specific references throughout.
format Online
Article
Text
id pubmed-10315748
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-103157482023-07-04 Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research Giandomenico, Stefano L. Schuman, Erin M. FEBS Open Bio Reviews Gaining a mechanistic understanding of the molecular pathways underpinning cellular and organismal physiology invariably relies on the perturbation of an experimental system to infer causality. This can be achieved either by genetic manipulation or by pharmacological treatment. Generally, the former approach is applicable to a wider range of targets, is more precise, and can address more nuanced functional aspects. Despite such apparent advantages, genetic manipulation (i.e., knock‐down, knock‐out, mutation, and tagging) in mammalian systems can be challenging due to problems with delivery, low rates of homologous recombination, and epigenetic silencing. The advent of CRISPR‐Cas9 in combination with the development of robust differentiation protocols that can efficiently generate a variety of different cell types in vitro has accelerated our ability to probe gene function in a more physiological setting. Often, the main obstacle in this path of enquiry is to achieve the desired genetic modification. In this short review, we will focus on gene perturbation in mammalian cells and how editing and differentiation of pluripotent stem cells can complement more traditional approaches. Additionally, we introduce novel targeted protein degradation approaches as an alternative to DNA/RNA‐based manipulation. Our aim is to present a broad overview of recent approaches and in vitro systems to study mammalian cell biology. Due to space limitations, we limit ourselves to providing the inexperienced reader with a conceptual framework on how to use these tools, and for more in‐depth information, we will provide specific references throughout. John Wiley and Sons Inc. 2023-03-08 /pmc/articles/PMC10315748/ /pubmed/36815235 http://dx.doi.org/10.1002/2211-5463.13581 Text en © 2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Reviews
Giandomenico, Stefano L.
Schuman, Erin M.
Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research
title Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research
title_full Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research
title_fullStr Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research
title_full_unstemmed Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research
title_short Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research
title_sort genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research
topic Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315748/
https://www.ncbi.nlm.nih.gov/pubmed/36815235
http://dx.doi.org/10.1002/2211-5463.13581
work_keys_str_mv AT giandomenicostefanol geneticmanipulationandtargetedproteindegradationinmammaliansystemspracticalconsiderationstipsandtricksfordiscoveryresearch
AT schumanerinm geneticmanipulationandtargetedproteindegradationinmammaliansystemspracticalconsiderationstipsandtricksfordiscoveryresearch