Cargando…
Value of fecal calprotectin in prediction of acute appendicitis based on a proposed model of machine learning
BACKGROUND: The aim of this study is to apply random forest (RF), one of the machine learning (ML) algorithms, to a dataset consisting of patients with a presumed diagnosis of acute appendicitis (AAp) and to reveal the most important factors associated with the diagnosis of AAp based on the variable...
Autores principales: | Küçükakçali, Zeynep, Akbulut, Sami, Çolak, Cemil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kare Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315941/ https://www.ncbi.nlm.nih.gov/pubmed/37278078 http://dx.doi.org/10.14744/tjtes.2023.10001 |
Ejemplares similares
-
Predicting Duodenal Cancer Risk in Patients with Familial Adenomatous Polyposis Using Machine Learning Model
por: Akbulut, Sami, et al.
Publicado: (2023) -
Machine Learning-based Prediction of HBV-related Hepatocellular Carcinoma and Detection of Key Candidate Biomarkers
por: KUCUKAKCALI, Zeynep, et al.
Publicado: (2022) -
Artificial intelligence-based prediction of molecular and genetic markers for hepatitis C–related hepatocellular carcinoma
por: Colak, Cemil, et al.
Publicado: (2023) -
Prediction of Perforated and Nonperforated Acute Appendicitis Using Machine Learning-Based Explainable Artificial Intelligence
por: Akbulut, Sami, et al.
Publicado: (2023) -
Modeling Based on Ensemble Learning Methods for Detection of Diagnostic Biomarkers from LncRNA Data in Rats Treated with Cis-Platinum-Induced Hepatotoxicity
por: Kucukakcali, Zeynep, et al.
Publicado: (2023)