Cargando…
ICAM-Reg: Interpretable Classification and Regression With Feature Attribution for Mapping Neurological Phenotypes in Individual Scans
An important goal of medical imaging is to be able to precisely detect patterns of disease specific to individual scans; however, this is challenged in brain imaging by the degree of heterogeneity of shape and appearance. Traditional methods, based on image registration, historically fail to detect...
Autores principales: | Bass, Cher, da Silva, Mariana, Sudre, Carole, Williams, Logan Z. J., Sousa, Helena S., Tudosiu, Petru-Daniel, Alfaro-Almagro, Fidel, Fitzgibbon, Sean P., Glasser, Matthew F., Smith, Stephen M., Robinson, Emma C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315989/ https://www.ncbi.nlm.nih.gov/pubmed/36374873 http://dx.doi.org/10.1109/TMI.2022.3221890 |
Ejemplares similares
-
RegScaf: a regression approach to scaffolding
por: Li, Mengtian, et al.
Publicado: (2022) -
RegCloser: a robust regression approach to closing genome gaps
por: Cao, Shenghao, et al.
Publicado: (2023) -
Hand classification of fMRI ICA noise components
por: Griffanti, Ludovica, et al.
Publicado: (2017) -
Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction
por: Bastiani, Matteo, et al.
Publicado: (2019) -
RegScan: a GWAS tool for quick estimation of allele effects on continuous traits and their combinations
por: Haller, Toomas, et al.
Publicado: (2015)