Cargando…
Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4
Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316008/ https://www.ncbi.nlm.nih.gov/pubmed/37269954 http://dx.doi.org/10.1016/j.jbc.2023.104877 |
_version_ | 1785067625242427392 |
---|---|
author | Miljkovic, Marisa Seguin, Alexandra Jia, Xuan Cox, James E. Catrow, Jonathan Leon Bergonia, Hector Phillips, John D. Stephens, W. Zac Ward, Diane M. |
author_facet | Miljkovic, Marisa Seguin, Alexandra Jia, Xuan Cox, James E. Catrow, Jonathan Leon Bergonia, Hector Phillips, John D. Stephens, W. Zac Ward, Diane M. |
author_sort | Miljkovic, Marisa |
collection | PubMed |
description | Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models. |
format | Online Article Text |
id | pubmed-10316008 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-103160082023-07-04 Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4 Miljkovic, Marisa Seguin, Alexandra Jia, Xuan Cox, James E. Catrow, Jonathan Leon Bergonia, Hector Phillips, John D. Stephens, W. Zac Ward, Diane M. J Biol Chem Research Article Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models. American Society for Biochemistry and Molecular Biology 2023-06-01 /pmc/articles/PMC10316008/ /pubmed/37269954 http://dx.doi.org/10.1016/j.jbc.2023.104877 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Miljkovic, Marisa Seguin, Alexandra Jia, Xuan Cox, James E. Catrow, Jonathan Leon Bergonia, Hector Phillips, John D. Stephens, W. Zac Ward, Diane M. Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4 |
title | Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4 |
title_full | Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4 |
title_fullStr | Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4 |
title_full_unstemmed | Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4 |
title_short | Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4 |
title_sort | loss of the mitochondrial protein abcb10 results in altered arginine metabolism in mel and k562 cells and nutrient stress signaling through atf4 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316008/ https://www.ncbi.nlm.nih.gov/pubmed/37269954 http://dx.doi.org/10.1016/j.jbc.2023.104877 |
work_keys_str_mv | AT miljkovicmarisa lossofthemitochondrialproteinabcb10resultsinalteredargininemetabolisminmelandk562cellsandnutrientstresssignalingthroughatf4 AT seguinalexandra lossofthemitochondrialproteinabcb10resultsinalteredargininemetabolisminmelandk562cellsandnutrientstresssignalingthroughatf4 AT jiaxuan lossofthemitochondrialproteinabcb10resultsinalteredargininemetabolisminmelandk562cellsandnutrientstresssignalingthroughatf4 AT coxjamese lossofthemitochondrialproteinabcb10resultsinalteredargininemetabolisminmelandk562cellsandnutrientstresssignalingthroughatf4 AT catrowjonathanleon lossofthemitochondrialproteinabcb10resultsinalteredargininemetabolisminmelandk562cellsandnutrientstresssignalingthroughatf4 AT bergoniahector lossofthemitochondrialproteinabcb10resultsinalteredargininemetabolisminmelandk562cellsandnutrientstresssignalingthroughatf4 AT phillipsjohnd lossofthemitochondrialproteinabcb10resultsinalteredargininemetabolisminmelandk562cellsandnutrientstresssignalingthroughatf4 AT stephenswzac lossofthemitochondrialproteinabcb10resultsinalteredargininemetabolisminmelandk562cellsandnutrientstresssignalingthroughatf4 AT warddianem lossofthemitochondrialproteinabcb10resultsinalteredargininemetabolisminmelandk562cellsandnutrientstresssignalingthroughatf4 |