Cargando…
Human placental extract: a potential therapeutic in treating osteoarthritis
Osteoarthritis (OA) is a degenerative joint disease marked by cartilage degradation and loss of function. Recently, there have been increased efforts to attenuate and reverse OA by stimulating cartilage regeneration and preventing cartilage degradation. Human placental extract (HPE) may be an option...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316113/ https://www.ncbi.nlm.nih.gov/pubmed/37404996 http://dx.doi.org/10.21037/atm.2019.10.20 |
Sumario: | Osteoarthritis (OA) is a degenerative joint disease marked by cartilage degradation and loss of function. Recently, there have been increased efforts to attenuate and reverse OA by stimulating cartilage regeneration and preventing cartilage degradation. Human placental extract (HPE) may be an option due to its anti-inflammatory, antioxidant, and growth stimulatory properties. These properties are useful in preventing cell death and senescence, which may optimize in-situ cartilage regeneration. In this review, we discuss the anatomy and physiology of the placenta, as well as explore in vivo and in vitro studies assessing its effects on tissue regeneration. Finally, we assess the potential role of HPE in cartilage regenerative medicine and OA. The Medline database was utilized for all studies that involved the use of HPE or human placenta hydrolysate. Exclusion criteria included articles not written in English, conference reviews, editorials, letters to the editor, surveys, case reports, and case series. HPE had significant anti-inflammatory and regenerative properties in vitro and in vivo. Furthermore, HPE had a role in attenuating cellular senescence and cell apoptosis via reduction of reactive oxidative species both in vitro and in vivo. One study explored the effects of HPE in OA and demonstrated reduction in cartilage catabolic gene expression, indicating HPE’s effect in attenuating OA. HPE houses favorable properties that can attenuate and reverse tissue damage. This may be a beneficial therapeutic in OA as it creates a more favorable environment for in-situ cartilage regeneration. More well designed in-vitro and in-vivo studies are needed to define the role of HPE in treating OA. |
---|