Cargando…
Glycopeptide-Based Supramolecular Hydrogels Induce Differentiation of Adipose Stem Cells into Neural Lineages
[Image: see text] We applied a bottom-up approach to develop biofunctional supramolecular hydrogels from an aromatic glycodipeptide. The self-assembly of the glycopeptide was induced by either temperature manipulation (heating–cooling cycle) or solvent (DMSO to water) switch. The sol–gel transition...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316323/ https://www.ncbi.nlm.nih.gov/pubmed/37327399 http://dx.doi.org/10.1021/acsami.3c05309 |
_version_ | 1785067685314297856 |
---|---|
author | Castro, Vânia I.B. Araújo, Ana R. Duarte, Filipa Sousa-Franco, António Reis, Rui L. Pashkuleva, Iva Pires, Ricardo A. |
author_facet | Castro, Vânia I.B. Araújo, Ana R. Duarte, Filipa Sousa-Franco, António Reis, Rui L. Pashkuleva, Iva Pires, Ricardo A. |
author_sort | Castro, Vânia I.B. |
collection | PubMed |
description | [Image: see text] We applied a bottom-up approach to develop biofunctional supramolecular hydrogels from an aromatic glycodipeptide. The self-assembly of the glycopeptide was induced by either temperature manipulation (heating–cooling cycle) or solvent (DMSO to water) switch. The sol–gel transition was salt-triggered in cell culture media and resulted in gels with the same chemical compositions but different mechanical properties. Human adipose derived stem cells (hASCs) cultured on these gels under basal conditions (i.e., without differentiation factors) overexpressed neural markers, such as GFAP, Nestin, MAP2, and βIII-tubulin, confirming the differentiation into neural lineages. The mechanical properties of the gels influenced the number and distribution of the adhered cells. A comparison with gels obtained from the nonglycosylated peptide showed that glycosylation is crucial for the biofunctionality of the hydrogels by capturing and preserving essential growth factors, e.g., FGF-2. |
format | Online Article Text |
id | pubmed-10316323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-103163232023-07-04 Glycopeptide-Based Supramolecular Hydrogels Induce Differentiation of Adipose Stem Cells into Neural Lineages Castro, Vânia I.B. Araújo, Ana R. Duarte, Filipa Sousa-Franco, António Reis, Rui L. Pashkuleva, Iva Pires, Ricardo A. ACS Appl Mater Interfaces [Image: see text] We applied a bottom-up approach to develop biofunctional supramolecular hydrogels from an aromatic glycodipeptide. The self-assembly of the glycopeptide was induced by either temperature manipulation (heating–cooling cycle) or solvent (DMSO to water) switch. The sol–gel transition was salt-triggered in cell culture media and resulted in gels with the same chemical compositions but different mechanical properties. Human adipose derived stem cells (hASCs) cultured on these gels under basal conditions (i.e., without differentiation factors) overexpressed neural markers, such as GFAP, Nestin, MAP2, and βIII-tubulin, confirming the differentiation into neural lineages. The mechanical properties of the gels influenced the number and distribution of the adhered cells. A comparison with gels obtained from the nonglycosylated peptide showed that glycosylation is crucial for the biofunctionality of the hydrogels by capturing and preserving essential growth factors, e.g., FGF-2. American Chemical Society 2023-06-16 /pmc/articles/PMC10316323/ /pubmed/37327399 http://dx.doi.org/10.1021/acsami.3c05309 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Castro, Vânia I.B. Araújo, Ana R. Duarte, Filipa Sousa-Franco, António Reis, Rui L. Pashkuleva, Iva Pires, Ricardo A. Glycopeptide-Based Supramolecular Hydrogels Induce Differentiation of Adipose Stem Cells into Neural Lineages |
title | Glycopeptide-Based
Supramolecular Hydrogels Induce
Differentiation of Adipose Stem Cells into Neural Lineages |
title_full | Glycopeptide-Based
Supramolecular Hydrogels Induce
Differentiation of Adipose Stem Cells into Neural Lineages |
title_fullStr | Glycopeptide-Based
Supramolecular Hydrogels Induce
Differentiation of Adipose Stem Cells into Neural Lineages |
title_full_unstemmed | Glycopeptide-Based
Supramolecular Hydrogels Induce
Differentiation of Adipose Stem Cells into Neural Lineages |
title_short | Glycopeptide-Based
Supramolecular Hydrogels Induce
Differentiation of Adipose Stem Cells into Neural Lineages |
title_sort | glycopeptide-based
supramolecular hydrogels induce
differentiation of adipose stem cells into neural lineages |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316323/ https://www.ncbi.nlm.nih.gov/pubmed/37327399 http://dx.doi.org/10.1021/acsami.3c05309 |
work_keys_str_mv | AT castrovaniaib glycopeptidebasedsupramolecularhydrogelsinducedifferentiationofadiposestemcellsintoneurallineages AT araujoanar glycopeptidebasedsupramolecularhydrogelsinducedifferentiationofadiposestemcellsintoneurallineages AT duartefilipa glycopeptidebasedsupramolecularhydrogelsinducedifferentiationofadiposestemcellsintoneurallineages AT sousafrancoantonio glycopeptidebasedsupramolecularhydrogelsinducedifferentiationofadiposestemcellsintoneurallineages AT reisruil glycopeptidebasedsupramolecularhydrogelsinducedifferentiationofadiposestemcellsintoneurallineages AT pashkulevaiva glycopeptidebasedsupramolecularhydrogelsinducedifferentiationofadiposestemcellsintoneurallineages AT piresricardoa glycopeptidebasedsupramolecularhydrogelsinducedifferentiationofadiposestemcellsintoneurallineages |