Cargando…

Machine Learning-Driven Discovery of Key Descriptors for CO(2) Activation over Two-Dimensional Transition Metal Carbides and Nitrides

[Image: see text] Fusing high-throughput quantum mechanical screening techniques with modern artificial intelligence strategies is among the most fundamental —yet revolutionary— science activities, capable of opening new horizons in catalyst discovery. Here, we apply this strategy to the process of...

Descripción completa

Detalles Bibliográficos
Autores principales: Abraham, B. Moses, Piqué, Oriol, Khan, Mohd Aamir, Viñes, Francesc, Illas, Francesc, Singh, Jayant K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316327/
https://www.ncbi.nlm.nih.gov/pubmed/37334697
http://dx.doi.org/10.1021/acsami.3c02821
_version_ 1785067686243336192
author Abraham, B. Moses
Piqué, Oriol
Khan, Mohd Aamir
Viñes, Francesc
Illas, Francesc
Singh, Jayant K.
author_facet Abraham, B. Moses
Piqué, Oriol
Khan, Mohd Aamir
Viñes, Francesc
Illas, Francesc
Singh, Jayant K.
author_sort Abraham, B. Moses
collection PubMed
description [Image: see text] Fusing high-throughput quantum mechanical screening techniques with modern artificial intelligence strategies is among the most fundamental —yet revolutionary— science activities, capable of opening new horizons in catalyst discovery. Here, we apply this strategy to the process of finding appropriate key descriptors for CO(2) activation over two-dimensional transition metal (TM) carbides/nitrides (MXenes). Various machine learning (ML) models are developed to screen over 114 pure and defective MXenes, where the random forest regressor (RFR) ML scheme exhibits the best predictive performance for the CO(2) adsorption energy, with a mean absolute error ± standard deviation of 0.16 ± 0.01 and 0.42 ± 0.06 eV for training and test data sets, respectively. Feature importance analysis revealed d-band center (ε(d)), surface metal electronegativity (χ(M)), and valence electron number of metal atoms (M(V)) as key descriptors for CO(2) activation. These findings furnish a fundamental basis for designing novel MXene-based catalysts through the prediction of potential indicators for CO(2) activation and their posterior usage.
format Online
Article
Text
id pubmed-10316327
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103163272023-07-04 Machine Learning-Driven Discovery of Key Descriptors for CO(2) Activation over Two-Dimensional Transition Metal Carbides and Nitrides Abraham, B. Moses Piqué, Oriol Khan, Mohd Aamir Viñes, Francesc Illas, Francesc Singh, Jayant K. ACS Appl Mater Interfaces [Image: see text] Fusing high-throughput quantum mechanical screening techniques with modern artificial intelligence strategies is among the most fundamental —yet revolutionary— science activities, capable of opening new horizons in catalyst discovery. Here, we apply this strategy to the process of finding appropriate key descriptors for CO(2) activation over two-dimensional transition metal (TM) carbides/nitrides (MXenes). Various machine learning (ML) models are developed to screen over 114 pure and defective MXenes, where the random forest regressor (RFR) ML scheme exhibits the best predictive performance for the CO(2) adsorption energy, with a mean absolute error ± standard deviation of 0.16 ± 0.01 and 0.42 ± 0.06 eV for training and test data sets, respectively. Feature importance analysis revealed d-band center (ε(d)), surface metal electronegativity (χ(M)), and valence electron number of metal atoms (M(V)) as key descriptors for CO(2) activation. These findings furnish a fundamental basis for designing novel MXene-based catalysts through the prediction of potential indicators for CO(2) activation and their posterior usage. American Chemical Society 2023-06-19 /pmc/articles/PMC10316327/ /pubmed/37334697 http://dx.doi.org/10.1021/acsami.3c02821 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Abraham, B. Moses
Piqué, Oriol
Khan, Mohd Aamir
Viñes, Francesc
Illas, Francesc
Singh, Jayant K.
Machine Learning-Driven Discovery of Key Descriptors for CO(2) Activation over Two-Dimensional Transition Metal Carbides and Nitrides
title Machine Learning-Driven Discovery of Key Descriptors for CO(2) Activation over Two-Dimensional Transition Metal Carbides and Nitrides
title_full Machine Learning-Driven Discovery of Key Descriptors for CO(2) Activation over Two-Dimensional Transition Metal Carbides and Nitrides
title_fullStr Machine Learning-Driven Discovery of Key Descriptors for CO(2) Activation over Two-Dimensional Transition Metal Carbides and Nitrides
title_full_unstemmed Machine Learning-Driven Discovery of Key Descriptors for CO(2) Activation over Two-Dimensional Transition Metal Carbides and Nitrides
title_short Machine Learning-Driven Discovery of Key Descriptors for CO(2) Activation over Two-Dimensional Transition Metal Carbides and Nitrides
title_sort machine learning-driven discovery of key descriptors for co(2) activation over two-dimensional transition metal carbides and nitrides
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316327/
https://www.ncbi.nlm.nih.gov/pubmed/37334697
http://dx.doi.org/10.1021/acsami.3c02821
work_keys_str_mv AT abrahambmoses machinelearningdrivendiscoveryofkeydescriptorsforco2activationovertwodimensionaltransitionmetalcarbidesandnitrides
AT piqueoriol machinelearningdrivendiscoveryofkeydescriptorsforco2activationovertwodimensionaltransitionmetalcarbidesandnitrides
AT khanmohdaamir machinelearningdrivendiscoveryofkeydescriptorsforco2activationovertwodimensionaltransitionmetalcarbidesandnitrides
AT vinesfrancesc machinelearningdrivendiscoveryofkeydescriptorsforco2activationovertwodimensionaltransitionmetalcarbidesandnitrides
AT illasfrancesc machinelearningdrivendiscoveryofkeydescriptorsforco2activationovertwodimensionaltransitionmetalcarbidesandnitrides
AT singhjayantk machinelearningdrivendiscoveryofkeydescriptorsforco2activationovertwodimensionaltransitionmetalcarbidesandnitrides