Cargando…
Machine Learning-Driven Discovery of Key Descriptors for CO(2) Activation over Two-Dimensional Transition Metal Carbides and Nitrides
[Image: see text] Fusing high-throughput quantum mechanical screening techniques with modern artificial intelligence strategies is among the most fundamental —yet revolutionary— science activities, capable of opening new horizons in catalyst discovery. Here, we apply this strategy to the process of...
Autores principales: | Abraham, B. Moses, Piqué, Oriol, Khan, Mohd Aamir, Viñes, Francesc, Illas, Francesc, Singh, Jayant K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316327/ https://www.ncbi.nlm.nih.gov/pubmed/37334697 http://dx.doi.org/10.1021/acsami.3c02821 |
Ejemplares similares
-
Exfoliation Energy as a Descriptor of MXenes Synthesizability and Surface Chemical Activity
por: Dolz, Daniel, et al.
Publicado: (2021) -
Adsorption and Activation of CO(2) on Nitride MXenes: Composition, Temperature, and Pressure effects
por: Jurado, Anabel, et al.
Publicado: (2021) -
Subsurface Carbon: A General Feature of Noble Metals
por: Piqué, Oriol, et al.
Publicado: (2019) -
Charting the Atomic
C Interaction with Transition
Metal Surfaces
por: Piqué, Oriol, et al.
Publicado: (2022) -
Artificial-intelligence-driven discovery of catalyst genes with application to CO(2) activation on semiconductor oxides
por: Mazheika, Aliaksei, et al.
Publicado: (2022)