Cargando…
Electrospray Deposition of PEDOT:PSS on Carbon Yarn Electrodes for Solid-State Flexible Supercapacitors
[Image: see text] The increasing demand for flexible electronic devices has risen due to the high interest in electronic textiles (e-textiles). Consequently, the urge to power e-textiles has sparked enormous interest in flexible energy storage devices. One-dimensional (1D) configuration supercapacit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316332/ https://www.ncbi.nlm.nih.gov/pubmed/37335296 http://dx.doi.org/10.1021/acsami.3c03903 |
Sumario: | [Image: see text] The increasing demand for flexible electronic devices has risen due to the high interest in electronic textiles (e-textiles). Consequently, the urge to power e-textiles has sparked enormous interest in flexible energy storage devices. One-dimensional (1D) configuration supercapacitors are the most promising technology for textile applications, but often their production involves complex synthesis techniques and expensive materials. This work unveils the use of the novel electrospray deposition (ESD) technique for the deposition of poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate) (PEDOT:PSS). This deposition methodology on conductive carbon yarns creates flexible electrodes with a high surface area. The deposition conditions of PEDOT:PSS were optimized, and their influence on the electrochemical performance of a 1D symmetric supercapacitor with a cellulose-based gel as an electrolyte and a separator was evaluated. The tests herein reported show that these capacitors exhibited a high specific capacitance of 72 mF g(–1), an excellent cyclability of more than 85% capacitance retention after 1500 cycles, and an outstanding capability of bending. |
---|