Cargando…

How to Make Plastic Surfaces Simultaneously Hydrophilic/Oleophobic?

[Image: see text] Hydrophilic/oleophobic surfaces are desirable in many applications including self-cleaning, antifogging, oil–water separation, etc. However, making plastic surfaces hydrophilic/oleophobic is challenging due to the intrinsic hydrophobicity/oleophilicity of plastics. Here, we report...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Yihan, Dunleavy, Michaela, Li, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316401/
https://www.ncbi.nlm.nih.gov/pubmed/37326374
http://dx.doi.org/10.1021/acsami.3c06787
Descripción
Sumario:[Image: see text] Hydrophilic/oleophobic surfaces are desirable in many applications including self-cleaning, antifogging, oil–water separation, etc. However, making plastic surfaces hydrophilic/oleophobic is challenging due to the intrinsic hydrophobicity/oleophilicity of plastics. Here, we report a simple and effective method of making plastics hydrophilic/oleophobic. Plastics, including poly (methyl methacrylate) (PMMA), polystyrene (PS), and polycarbonate (PC), have been coated with a perfluoropolyether (PFPE) (i.e., commercially known as Zdol) via dip coating and then irradiated with UV/Ozone. The contact angle measurements indicate that the treated plastics have a lower water contact angle (WCA) and higher hexadecane contact angle (HCA), i.e., they are simultaneously hydrophilic/oleophobic. The Fourier transform infrared (FTIR) results suggest that UV/Ozone treatment introduces oxygen-containing polar groups on the plastic surfaces, which renders the plastic surfaces hydrophilic. Meanwhile, more orderly packed PFPE Zdol molecules, which is due to the UV-induced bonding between PFPE Zdol and the plastic surface, result in the oleophobicity. Moreover, the simultaneous hydrophilicity/oleophobicity of functionalized plastics does not degrade in aging tests, and they have superior antifogging performance and detergent-free cleaning capability. This simple method developed here potentially can be applied to other plastics and has important implications in the functionalization of plastic surfaces.