Cargando…
Addressing health disparities using multiply imputed injury surveillance data
BACKGROUND: Assessing disparities in injury is crucial for injury prevention and for evaluating injury prevention strategies, but efforts have been hampered by missing data. This study aimed to show the utility and reliability of the injury surveillance system as a trustworthy resource for examining...
Autores principales: | Liu, Yang, Wolkin, Amy F., Kresnow, Marcie-jo, Schroeder, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316636/ https://www.ncbi.nlm.nih.gov/pubmed/37400819 http://dx.doi.org/10.1186/s12939-023-01940-4 |
Ejemplares similares
-
Differential Network Analysis with Multiply Imputed Lipidomic Data
por: Kujala, Maiju, et al.
Publicado: (2015) -
Validation of prediction models based on lasso regression with multiply imputed data
por: Musoro, Jammbe Z, et al.
Publicado: (2014) -
A comparison of model selection methods for prediction in the presence of multiply imputed data
por: Thao, Le Thi Phuong, et al.
Publicado: (2018) -
Vital Signs: Health Burden and Medical Costs of Nonfatal Injuries to Motor Vehicle Occupants — United States, 2012
por: Bergen, Gwen, et al.
Publicado: (2014) -
The estimation and use of predictions for the assessment of model performance using large samples with multiply imputed data
por: Wood, Angela M, et al.
Publicado: (2015)