Cargando…

A C-type lectin in saliva of Aedes albopictus (Diptera: Culicidae) bind and agglutinate microorganisms with broad spectrum

Via complex salivary mixture, mosquitos can intervene immune response and be helpful to transmit several viruses causing deadly human diseases. Some C-type lectins (CTLs) of mosquito have been reported to be pattern recognition receptor to either resist or promote pathogen invading. Here, we investi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Zimin, Cheng, Jinzhi, Mu, Xiaohui, Kuang, Xiaoyuan, Li, Zhiqiang, Wu, Jiahong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317052/
https://www.ncbi.nlm.nih.gov/pubmed/37399114
http://dx.doi.org/10.1093/jisesa/iead043
Descripción
Sumario:Via complex salivary mixture, mosquitos can intervene immune response and be helpful to transmit several viruses causing deadly human diseases. Some C-type lectins (CTLs) of mosquito have been reported to be pattern recognition receptor to either resist or promote pathogen invading. Here, we investigated the expression profile and agglutination function of an Aedes albopictus CTL (Aalb_CTL2) carrying a single carbohydrate-recognition domain (CRD) and WND/KPD motifs. The results showed that Aalb_CTL2 was found to be specifically expressed in mosquito saliva gland and its expression was not induced by blood-feeding. The recombinant Aalb_CTL2 (rAalb_CTL2) could agglutinate mouse erythrocytes in the presence of calcium and the agglutinating activity could be inhibited by EDTA. rAalb_CTL2 also displayed the sugar binding ability to D-mannose, D-galactose, D-glucose, and maltose. Furthermore, it was demonstrated that rAalb_CTL2 could bind and agglutinate Gram positive bacteria Staphylococcus aureus and Bacillus subtilis, Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa, as well as fungus Candida albicans in vitro in a calcium dependent manner. However, rAalb_CTL2 could not promote type 2 dengue virus (DENV-2) replication in THP-1 and BHK-21 cell lines. These findings uncover that Aalb_CTL2 might be involved in the innate immunity of mosquito to resist microorganism multiplication in sugar and blood meals to help mosquito survive in the varied natural environment.