Cargando…
Accurate integration of multiple heterogeneous single-cell RNA-seq data sets by learning contrastive biological variation
For most biological and medical applications of single-cell transcriptomics, an integrative study of multiple heterogeneous single-cell RNA sequencing (scRNA-seq) data sets is crucial. However, present approaches are unable to integrate diverse data sets from various biological conditions effectivel...
Autores principales: | Zhou, Yang, Sheng, Qiongyu, Qi, Jing, Hua, Jiao, Yang, Bo, Wan, Lei, Jin, Shuilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317120/ https://www.ncbi.nlm.nih.gov/pubmed/37308294 http://dx.doi.org/10.1101/gr.277522.122 |
Ejemplares similares
-
Unsupervised contrastive peak caller for ATAC-seq
por: Vu, Ha T.H., et al.
Publicado: (2023) -
Quantitative MNase-seq accurately maps nucleosome occupancy levels
por: Chereji, Răzvan V., et al.
Publicado: (2019) -
SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection
por: Wan, Shibiao, et al.
Publicado: (2020) -
scMTD: a statistical multidimensional imputation method for single-cell RNA-seq data leveraging transcriptome dynamic information
por: Qi, Jing, et al.
Publicado: (2022) -
STARRPeaker: uniform processing and accurate identification of STARR-seq active regions
por: Lee, Donghoon, et al.
Publicado: (2020)