Cargando…
Exercise hormone irisin is a critical regulator of cognitive function
Identifying secreted mediators driving the cognitive benefits of exercise holds great promise for the treatment of cognitive decline in aging or Alzheimer’s disease (AD). Here, we show that irisin, the cleaved and circulating form of the exercise-induced membrane protein FNDC5, is sufficient to conf...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317538/ https://www.ncbi.nlm.nih.gov/pubmed/34417591 http://dx.doi.org/10.1038/s42255-021-00438-z |
Sumario: | Identifying secreted mediators driving the cognitive benefits of exercise holds great promise for the treatment of cognitive decline in aging or Alzheimer’s disease (AD). Here, we show that irisin, the cleaved and circulating form of the exercise-induced membrane protein FNDC5, is sufficient to confer the exercise benefits on cognitive function. Genetic deletion of FNDC5/irisin (global F5KO mice) impairs cognitive function in exercise, aging, and AD. Diminished pattern separation in F5KOs can be rescued by delivering irisin directly into the dentate gyrus, suggesting that irisin is the active moiety. In F5KO mice, adult-born neurons in the dentate gyrus are morphologically, transcriptionally, and functionally abnormal. Importantly, elevation of circulating irisin levels by peripheral delivery of irisin via adeno-associated viral overexpression in the liver, results in enrichment of central irisin and is sufficient to improve both the cognitive deficit and neuropathology in AD mouse models. Irisin is a crucial regulator of cognitive benefits of exercise and potential therapeutic for treating cognitive disorders including AD. |
---|