Cargando…
Deep learning PET/CT‐based radiomics integrates clinical data: A feasibility study to distinguish between tuberculosis nodules and lung cancer
BACKGROUND: Radiomic diagnosis models generally consider only a single dimension of information, leading to limitations in their diagnostic accuracy and reliability. The integration of multiple dimensions of information into the deep learning model have the potential to improve its diagnostic capabi...
Autores principales: | Zhang, Xiaolei, Dong, Xianling, Saripan, M. Iqbal bin, Du, Dongyang, Wu, Yanjun, Wang, Zhongxiao, Cao, Zhendong, Wen, Dong, Liu, Yanli, Marhaban, Mohammad Hamiruce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317593/ https://www.ncbi.nlm.nih.gov/pubmed/37183577 http://dx.doi.org/10.1111/1759-7714.14924 |
Ejemplares similares
-
Prognostic value of (18)F-FDG PET/CT-based radiomics combining dosiomics and dose volume histogram for head and neck cancer
por: Wang, Bingzhen, et al.
Publicado: (2023) -
Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation
por: Dong, Xianling, et al.
Publicado: (2020) -
Spectral CT-based radiomics signature for distinguishing malignant pulmonary nodules from benign
por: Xu, Hang, et al.
Publicado: (2023) -
Radiomics as a non-invasive adjunct to Chest CT in distinguishing benign and malignant lung nodules
por: Selvam, Minmini, et al.
Publicado: (2023) -
Quantitative classification and radiomics of [(18)F]FDG-PET/CT in indeterminate thyroid nodules
por: de Koster, Elizabeth J., et al.
Publicado: (2022)