Cargando…

Photon-counting CT allows better visualization of temporal bone structures in comparison with current generation multi-detector CT

PURPOSE: To compare photon-counting CT (PCCT) and multi-detector CT (MDCT) for visualization of temporal bone anatomic structures. METHODS: Thirty-six exams of temporal bones without pathology were collected from consecutive patients on a MDCT, and another 35 exams on a PCCT scanner. Two radiologist...

Descripción completa

Detalles Bibliográficos
Autores principales: Hermans, Robert, Boomgaert, Lukas, Cockmartin, Lesley, Binst, Joke, De Stefanis, Rashèl, Bosmans, Hilde
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317909/
https://www.ncbi.nlm.nih.gov/pubmed/37395919
http://dx.doi.org/10.1186/s13244-023-01467-w
Descripción
Sumario:PURPOSE: To compare photon-counting CT (PCCT) and multi-detector CT (MDCT) for visualization of temporal bone anatomic structures. METHODS: Thirty-six exams of temporal bones without pathology were collected from consecutive patients on a MDCT, and another 35 exams on a PCCT scanner. Two radiologists independently scored visibility of 14 structures for the MDCT and PCCT dataset, using a 5-point Likert scale, with a 2-month wash-out period. For MDCT, the acquisition parameters were: 110 kV, 64 × 0.6 mm (slice thickness reconstructed to 0.4 mm), pitch 0.85, quality ref. mAs 150, and 1 s rotation time; for PCCT: 120 kV, 144 × 0.2 mm, pitch 0.35, IQ level 75, and 0.5 s rotation time. Patient doses were reported as dose length product values (DLP). Statistical analysis was done using the Mann–Whitney U test, visual grading characteristic (VGC) analysis, and ordinal regression. RESULTS: Substantial agreement was found between readers (intraclass correlation coefficient 0.63 and 0.52 for MDCT and PCCT, resp.). All structures were scored higher for PCCT (p < 0.0001), except for Arnold’s canal (p = 0.12). The area under the VGC curve was 0.76 (95% CI, 0.73–0.79), indicating a significantly better visualization on PCCT. Ordinal regression showed the odds for better visualization are 354 times higher (95% CI, 75–1673) in PCCT (p < 0.0001). Average (range) of DLP was 95 (79–127) mGy*cm for MDCT and 74 (50–95) mGy*cm for PCCT (p < 0.001). CONCLUSION: PCCT provides a better depiction of temporal bone anatomy than MDCT, at a lower radiation dose. GRAPHICAL ABSTRACT: [Image: see text] CRITICAL RELEVANCE STATEMENT: PCCT provides a better depiction of temporal bone anatomy than MDCT, at a lower radiation dose. KEY POINTS: 1. PCCT allows high-resolution imaging of temporal bone structures. 2. Compared to MDCT, the visibility of normal temporal bone structures is scored better with PCCT. 3. PCCT allows to obtain high-quality CT images of the temporal bones at lower radiation doses than MDCT.