Cargando…

SIRT1 ubiquitination is regulated by opposing activities of APC/C-Cdh1 and AROS during stress-induced premature senescence

SIRT1, a member of the mammalian sirtuin family, is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase with key roles in aging-related diseases and cellular senescence. However, the mechanism by which SIRT1 protein homeostasis is controlled under senescent conditions remains elusive....

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Sang Hyup, Yang, Ji-Hye, Park, Ui-Hyun, Choi, Hanbyeul, Kim, Yoo Sung, Yoon, Bo-Eun, Han, Hye-Jeong, Kim, Hyun-Taek, Um, Soo-Jong, Kim, Eun-Joo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318011/
https://www.ncbi.nlm.nih.gov/pubmed/37258580
http://dx.doi.org/10.1038/s12276-023-01012-1
Descripción
Sumario:SIRT1, a member of the mammalian sirtuin family, is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase with key roles in aging-related diseases and cellular senescence. However, the mechanism by which SIRT1 protein homeostasis is controlled under senescent conditions remains elusive. Here, we revealed that SIRT1 protein is significantly downregulated due to ubiquitin-mediated proteasomal degradation during stress-induced premature senescence (SIPS) and that SIRT1 physically associates with anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase. Ubiquitin-dependent SIRT1 degradation is stimulated by the APC/C coactivator Cdh1 and not by the coactivator Cdc20. We found that Cdh1 depletion impaired the SIPS-promoted downregulation of SIRT1 expression and reduced cellular senescence, likely through SIRT1-driven p53 inactivation. In contrast, AROS, a SIRT1 activator, reversed the SIRT1 degradation induced by diverse stressors and antagonized Cdh1 function through competitive interactions with SIRT1. Furthermore, our data indicate opposite roles for Cdh1 and AROS in the epigenetic regulation of the senescence-associated secretory phenotype genes IL-6 and IL-8. Finally, we demonstrated that pinosylvin restores downregulated AROS (and SIRT1) expression levels in bleomycin-induced mouse pulmonary senescent tissue while repressing bleomycin-promoted Cdh1 expression. Overall, our study provides the first evidence of the reciprocal regulation of SIRT1 stability by APC/C-Cdh1 and AROS during stress-induced premature senescence, and our findings suggest pinosylvin as a potential senolytic agent for pulmonary fibrosis.