Cargando…

Luteolin reduces cardiac damage caused by hyperlipidemia in Sprague-Dawley rats

OBJECTIVE: Hyperlipidemia is a risk factor for cardiac damage that can lead to many cardiovascular diseases. A recent study reported the cardioprotective effects of luteolin in vitro and in vivo. In this study, we aimed to investigate the possible protective effects of luteolin against hyperlipidemi...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Min, Luo, Yao, Lan, Yong, He, Qinghua, Xu, Lei, Pei, Zuowei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318514/
https://www.ncbi.nlm.nih.gov/pubmed/37408924
http://dx.doi.org/10.1016/j.heliyon.2023.e17613
Descripción
Sumario:OBJECTIVE: Hyperlipidemia is a risk factor for cardiac damage that can lead to many cardiovascular diseases. A recent study reported the cardioprotective effects of luteolin in vitro and in vivo. In this study, we aimed to investigate the possible protective effects of luteolin against hyperlipidemia-induced cardiac damage in Sprague-Dawley (SD) rats. METHODS: Six-week-old male SD rats were randomly divided into five groups: a normal diet (ND) group; a high-fat diet (HFD) group; and three high-fat diet mixed with luteolin (HFD + LUT) groups, where in a luteolin dosage 50, 100, or 200 mg/kg/day was administered. All groups were fed their respective diets for 12 weeks. RESULTS: Left ventricular ejection fraction and fractional shortening (parameters of cardiac function) were lower in the HFD + LUT (100 mg/kg/day) group than in the HFD group. Metabolic parameters were lower in the HFD + LUT (100 mg/kg/day) group than in the HFD group. Collagen I, collagen III, and TGF-β expression levels were lower in the cardiac tissues of the HFD + LUT (100 mg/kg/day) group, compared to those of the HFD group. Expression of the profibrotic genes MMP2 and MMP9 was suppressed in the cardiac tissues of the HFD + LUT (100 mg/kg/day) group, compared to those of the HFD group. Furthermore, CD36 and lectin-like oxidized low-density lipoprotein receptor-1 protein levels were lower in the cardiac tissues of the HFD + LUT (100 mg/kg/day) group, compared to those of the HFD group. CONCLUSION: These findings would provide new insights into the role of luteolin in hyperlipidemia-induced cardiac damage and contribute to the development of novel therapeutic interventions to treat cardiovascular disease progression.