Cargando…
Segmentation-Free OCT-Volume-Based Deep Learning Model Improves Pointwise Visual Field Sensitivity Estimation
PURPOSE: The structural changes measured by optical coherence tomography (OCT) are related to functional changes in visual fields (VFs). This study aims to accurately assess the structure-function relationship and overcome the challenges brought by the minimal measurable level (floor effect) of segm...
Autores principales: | Chen, Zhiqi, Shemuelian, Eitan, Wollstein, Gadi, Wang, Yao, Ishikawa, Hiroshi, Schuman, Joel S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318595/ https://www.ncbi.nlm.nih.gov/pubmed/37382575 http://dx.doi.org/10.1167/tvst.12.6.28 |
Ejemplares similares
-
Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning
por: Hemelings, Ruben, et al.
Publicado: (2022) -
Can Glaucoma Suspect Data Help to Improve the Performance of Glaucoma Diagnosis?
por: Abbasi, Ashkan, et al.
Publicado: (2023) -
Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning
por: Valmaggia, Philippe, et al.
Publicado: (2022) -
A feature agnostic approach for glaucoma detection in OCT volumes
por: Maetschke, Stefan, et al.
Publicado: (2019) -
Deep Learning for Diagnosing and Segmenting Choroidal Neovascularization in OCT Angiography in a Large Real-World Data Set
por: Wang, Jie, et al.
Publicado: (2023)