Cargando…
Computing within-study covariances, data visualization, and missing data solutions for multivariate meta-analysis with metavcov
Multivariate meta-analysis (MMA) is a powerful statistical technique that can provide more reliable and informative results than traditional univariate meta-analysis, which allows for comparisons across outcomes with increased statistical power. However, implementing appropriate statistical methods...
Autor principal: | Lu, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319001/ https://www.ncbi.nlm.nih.gov/pubmed/37408962 http://dx.doi.org/10.3389/fpsyg.2023.1185012 |
Ejemplares similares
-
Estimating within-study covariances in multivariate meta-analysis with multiple outcomes
por: Wei, Yinghui, et al.
Publicado: (2013) -
Computing Multivariate Effect Sizes and Their Sampling Covariance Matrices With Structural Equation Modeling: Theory, Examples, and Computer Simulations
por: Cheung, Mike W.-L.
Publicado: (2018) -
Fast covariance estimation for multivariate sparse functional data
por: Li, Cai, et al.
Publicado: (2020) -
Comparison of Methods for Handling Missing Covariate Data
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Bayesian Covariance Structure Modeling of Responses and Process Data
por: Klotzke, Konrad, et al.
Publicado: (2019)