Cargando…
MLNet: a multi-level multimodal named entity recognition architecture
In the field of human–computer interaction, accurate identification of talking objects can help robots to accomplish subsequent tasks such as decision-making or recommendation; therefore, object determination is of great interest as a pre-requisite task. Whether it is named entity recognition (NER)...
Autores principales: | Zhai, Hanming, Lv, Xiaojun, Hou, Zhiwen, Tong, Xin, Bu, Fanliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319056/ https://www.ncbi.nlm.nih.gov/pubmed/37408584 http://dx.doi.org/10.3389/fnbot.2023.1181143 |
Ejemplares similares
-
Hands-On Machine Learning with ML.NET
por: Capellman, Jarred
Publicado: (2020) -
Biomedical named entity recognition based on fusion multi-features embedding
por: Li, Meijing, et al.
Publicado: (2023) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
ML.NET Revealed: Simple Tools for Applying Machine Learning to Your Applications
por: Mukherjee, Sudipta
Publicado: (2020) -
Monitoring named entity recognition: the League Table
por: Rebholz-Schuhmann, Dietrich, et al.
Publicado: (2013)