Cargando…
Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode
The soybean cyst nematode (SCN) [Heterodera glycines Ichinohe] is a devastating pathogen of soybean [Glycine max (L.) Merr.] that is rapidly becoming a global economic issue. Two loci conferring SCN resistance have been identified in soybean, Rhg1 and Rhg4; however, they offer declining protection....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319130/ https://www.ncbi.nlm.nih.gov/pubmed/37409347 http://dx.doi.org/10.3389/fbinf.2023.1199675 |
_version_ | 1785068179611975680 |
---|---|
author | Nissan, Nour Hooker, Julia Arezza, Eric Dick, Kevin Golshani, Ashkan Mimee, Benjamin Cober, Elroy Green, James Samanfar, Bahram |
author_facet | Nissan, Nour Hooker, Julia Arezza, Eric Dick, Kevin Golshani, Ashkan Mimee, Benjamin Cober, Elroy Green, James Samanfar, Bahram |
author_sort | Nissan, Nour |
collection | PubMed |
description | The soybean cyst nematode (SCN) [Heterodera glycines Ichinohe] is a devastating pathogen of soybean [Glycine max (L.) Merr.] that is rapidly becoming a global economic issue. Two loci conferring SCN resistance have been identified in soybean, Rhg1 and Rhg4; however, they offer declining protection. Therefore, it is imperative that we identify additional mechanisms for SCN resistance. In this paper, we develop a bioinformatics pipeline to identify protein–protein interactions related to SCN resistance by data mining massive-scale datasets. The pipeline combines two leading sequence-based protein–protein interaction predictors, the Protein–protein Interaction Prediction Engine (PIPE), PIPE4, and Scoring PRotein INTeractions (SPRINT) to predict high-confidence interactomes. First, we predicted the top soy interacting protein partners of the Rhg1 and Rhg4 proteins. Both PIPE4 and SPRINT overlap in their predictions with 58 soybean interacting partners, 19 of which had GO terms related to defense. Beginning with the top predicted interactors of Rhg1 and Rhg4, we implement a “guilt by association” in silico proteome-wide approach to identify novel soybean genes that may be involved in SCN resistance. This pipeline identified 1,082 candidate genes whose local interactomes overlap significantly with the Rhg1 and Rhg4 interactomes. Using GO enrichment tools, we highlighted many important genes including five genes with GO terms related to response to the nematode (GO:0009624), namely, Glyma.18G029000, Glyma.11G228300, Glyma.08G120500, Glyma.17G152300, and Glyma.08G265700. This study is the first of its kind to predict interacting partners of known resistance proteins Rhg1 and Rhg4, forming an analysis pipeline that enables researchers to focus their search on high-confidence targets to identify novel SCN resistance genes in soybean. |
format | Online Article Text |
id | pubmed-10319130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103191302023-07-05 Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode Nissan, Nour Hooker, Julia Arezza, Eric Dick, Kevin Golshani, Ashkan Mimee, Benjamin Cober, Elroy Green, James Samanfar, Bahram Front Bioinform Bioinformatics The soybean cyst nematode (SCN) [Heterodera glycines Ichinohe] is a devastating pathogen of soybean [Glycine max (L.) Merr.] that is rapidly becoming a global economic issue. Two loci conferring SCN resistance have been identified in soybean, Rhg1 and Rhg4; however, they offer declining protection. Therefore, it is imperative that we identify additional mechanisms for SCN resistance. In this paper, we develop a bioinformatics pipeline to identify protein–protein interactions related to SCN resistance by data mining massive-scale datasets. The pipeline combines two leading sequence-based protein–protein interaction predictors, the Protein–protein Interaction Prediction Engine (PIPE), PIPE4, and Scoring PRotein INTeractions (SPRINT) to predict high-confidence interactomes. First, we predicted the top soy interacting protein partners of the Rhg1 and Rhg4 proteins. Both PIPE4 and SPRINT overlap in their predictions with 58 soybean interacting partners, 19 of which had GO terms related to defense. Beginning with the top predicted interactors of Rhg1 and Rhg4, we implement a “guilt by association” in silico proteome-wide approach to identify novel soybean genes that may be involved in SCN resistance. This pipeline identified 1,082 candidate genes whose local interactomes overlap significantly with the Rhg1 and Rhg4 interactomes. Using GO enrichment tools, we highlighted many important genes including five genes with GO terms related to response to the nematode (GO:0009624), namely, Glyma.18G029000, Glyma.11G228300, Glyma.08G120500, Glyma.17G152300, and Glyma.08G265700. This study is the first of its kind to predict interacting partners of known resistance proteins Rhg1 and Rhg4, forming an analysis pipeline that enables researchers to focus their search on high-confidence targets to identify novel SCN resistance genes in soybean. Frontiers Media S.A. 2023-06-20 /pmc/articles/PMC10319130/ /pubmed/37409347 http://dx.doi.org/10.3389/fbinf.2023.1199675 Text en Copyright © 2023 Nissan, Hooker, Arezza, Dick, Golshani, Mimee, Cober, Green and Samanfar. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioinformatics Nissan, Nour Hooker, Julia Arezza, Eric Dick, Kevin Golshani, Ashkan Mimee, Benjamin Cober, Elroy Green, James Samanfar, Bahram Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode |
title | Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode |
title_full | Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode |
title_fullStr | Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode |
title_full_unstemmed | Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode |
title_short | Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode |
title_sort | large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319130/ https://www.ncbi.nlm.nih.gov/pubmed/37409347 http://dx.doi.org/10.3389/fbinf.2023.1199675 |
work_keys_str_mv | AT nissannour largescaledataminingpipelineforidentifyingnovelsoybeangenesinvolvedinresistanceagainstthesoybeancystnematode AT hookerjulia largescaledataminingpipelineforidentifyingnovelsoybeangenesinvolvedinresistanceagainstthesoybeancystnematode AT arezzaeric largescaledataminingpipelineforidentifyingnovelsoybeangenesinvolvedinresistanceagainstthesoybeancystnematode AT dickkevin largescaledataminingpipelineforidentifyingnovelsoybeangenesinvolvedinresistanceagainstthesoybeancystnematode AT golshaniashkan largescaledataminingpipelineforidentifyingnovelsoybeangenesinvolvedinresistanceagainstthesoybeancystnematode AT mimeebenjamin largescaledataminingpipelineforidentifyingnovelsoybeangenesinvolvedinresistanceagainstthesoybeancystnematode AT coberelroy largescaledataminingpipelineforidentifyingnovelsoybeangenesinvolvedinresistanceagainstthesoybeancystnematode AT greenjames largescaledataminingpipelineforidentifyingnovelsoybeangenesinvolvedinresistanceagainstthesoybeancystnematode AT samanfarbahram largescaledataminingpipelineforidentifyingnovelsoybeangenesinvolvedinresistanceagainstthesoybeancystnematode |