Cargando…

Comparison of PlanetScope, Sentinel-2, and landsat 8 data in soybean yield estimation within-field variability with random forest regression

Accurate timely and early-season crop yield estimation within the field variability is important for precision farming and sustainable management applications. Therefore, the ability to estimate the within-field variability of grain yield is crucial for ensuring food security worldwide, especially u...

Descripción completa

Detalles Bibliográficos
Autores principales: Amankulova, Khilola, Farmonov, Nizom, Akramova, Parvina, Tursunov, Ikrom, Mucsi, László
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319221/
https://www.ncbi.nlm.nih.gov/pubmed/37408926
http://dx.doi.org/10.1016/j.heliyon.2023.e17432
Descripción
Sumario:Accurate timely and early-season crop yield estimation within the field variability is important for precision farming and sustainable management applications. Therefore, the ability to estimate the within-field variability of grain yield is crucial for ensuring food security worldwide, especially under climate change. Several Earth observation systems have thus been developed to monitor crops and predict yields. Despite this, new research is required to combine multiplatform data integration, advancements in satellite technologies, data processing, and the application of this discipline to agricultural practices. This study provides further developments in soybean yield estimation by comparing multisource satellite data from PlanetScope (PS), Sentinel-2 (S2), and Landsat 8 (L8) and introducing topographic and meteorological variables. Herein, a new method of combining soybean yield, global positioning systems, harvester data, climate, topographic variables, and remote sensing images has been demonstrated. Soybean yield shape points were obtained from a combine-harvester-installed GPS and yield monitoring system from seven fields over the 2021 season. The yield estimation models were trained and validated using random forest, and four vegetation indices were tested. The result showed that soybean yield can be accurately predicted at 3-, 10-, and 30-m resolutions with mean absolute error (MAE) value of 0.091 t/ha for PS, 0.118 t/ha for S2, and 0.120 t/ha for L8 data (root mean square error (RMSE) of 0.111, 0.076). The combination of the environmental data with the original bands provided further improvements and an accurate yield estimation model within the soybean yield variability with MAE of 0.082 t/ha for PS, 0.097 t/ha for S2, and 0.109 t/ha for L8 (RMSE of 0.094, 0.069, and 0.108 t/ha). The results showed that the optimal date to predict the soybean yield within the field scale was approximately 60 or 70 days before harvesting periods during the beginning bloom stage. The developed model can be applied for other crops and locations when suitable training yield data, which are critical for precision farming, are available.