Cargando…
Design of feature selection algorithm for high-dimensional network data based on supervised discriminant projection
High dimension and complexity of network high-dimensional data lead to poor feature selection effect network high-dimensional data. To effectively solve this problem, feature selection algorithms for high-dimensional network data based on supervised discriminant projection (SDP) have been designed....
Autores principales: | Zhang, Zongfu, Luo, Qingjia, Ying, Zuobin, Chen, Rongbin, Chen, Hongan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319262/ https://www.ncbi.nlm.nih.gov/pubmed/37409076 http://dx.doi.org/10.7717/peerj-cs.1447 |
Ejemplares similares
-
Semi-supervised associative classification using ant colony optimization algorithm
por: Awan, Hamid Hussain, et al.
Publicado: (2021) -
An algorithm for calculating top-dimensional bounding chains
por: Carvalho, J. Frederico, et al.
Publicado: (2018) -
Introspective analysis of convolutional neural networks for improving discrimination performance and feature visualisation
por: Shafiq, Shakeel, et al.
Publicado: (2021) -
A novel chaotic transient search optimization algorithm for global optimization, real-world engineering problems and feature selection
por: Altay, Osman, et al.
Publicado: (2023) -
High-dimensional normalized data profiles for testing derivative-free optimization algorithms
por: Musafer, Hassan, et al.
Publicado: (2022)