Cargando…
Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer
BACKGROUND: The dilemma of pancreatic cancer treatment has become a global challenge. For this reason, effective, feasible, and new medical methods are currently much-needed. Betulinic acid (BA) has been valued as a potential therapy for pancreatic cancer. However, the mechanism by which BA exerts a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tech Science Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319593/ https://www.ncbi.nlm.nih.gov/pubmed/37415745 http://dx.doi.org/10.32604/or.2023.026959 |
_version_ | 1785068269839843328 |
---|---|
author | LI, XIN JIANG, WENKAI LI, WANCHENG DONG, SHI DU, YAN ZHANG, HUI ZHOU, WENCE |
author_facet | LI, XIN JIANG, WENKAI LI, WANCHENG DONG, SHI DU, YAN ZHANG, HUI ZHOU, WENCE |
author_sort | LI, XIN |
collection | PubMed |
description | BACKGROUND: The dilemma of pancreatic cancer treatment has become a global challenge. For this reason, effective, feasible, and new medical methods are currently much-needed. Betulinic acid (BA) has been valued as a potential therapy for pancreatic cancer. However, the mechanism by which BA exerts an inhibitory effect on the development of pancreatic cancer remains elusive. METHODS: A rat model and two cell models of pancreatic cancer were established, and the effect of BA on pancreatic cancer was verified in vivo and in vitro by using MTT, Transwell, flow cytometry, RT-PCR, Elisa and immunohistochemistry. At the same time, miR-365 inhibitors were introduced to test whether BA played a role in mediating miR-365. RESULTS: BA can significantly inhibit the proliferation and invasion of pancreatic cancer cells and promote apoptosis. In vivo experiments, BA can significantly lower the number of cancer cells and tumor volume in the rat model of pancreatic cancer. In vitro, it was found that BA inhibited the protein level and phosphorylation level of AKT/STAT3 by mediating the expression of miR365/BTG2/IL-6. Like BA, miR-365 inhibitors also significantly inhibited cell viability and invasion ability, and inhibited the protein level and phosphorylation level of AKT/STAT3 by changing the expression of BTG2/IL-6, and their combination had a synergistic effect. CONCLUSION: BA inhibits AKT/STAT3 expression and phosphorylation by modulating miR-365/BTG2/IL-6 expression, and BA inhibits the progression of pancreatic cancer through the aforementioned mechanism. |
format | Online Article Text |
id | pubmed-10319593 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Tech Science Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-103195932023-07-06 Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer LI, XIN JIANG, WENKAI LI, WANCHENG DONG, SHI DU, YAN ZHANG, HUI ZHOU, WENCE Oncol Res Article BACKGROUND: The dilemma of pancreatic cancer treatment has become a global challenge. For this reason, effective, feasible, and new medical methods are currently much-needed. Betulinic acid (BA) has been valued as a potential therapy for pancreatic cancer. However, the mechanism by which BA exerts an inhibitory effect on the development of pancreatic cancer remains elusive. METHODS: A rat model and two cell models of pancreatic cancer were established, and the effect of BA on pancreatic cancer was verified in vivo and in vitro by using MTT, Transwell, flow cytometry, RT-PCR, Elisa and immunohistochemistry. At the same time, miR-365 inhibitors were introduced to test whether BA played a role in mediating miR-365. RESULTS: BA can significantly inhibit the proliferation and invasion of pancreatic cancer cells and promote apoptosis. In vivo experiments, BA can significantly lower the number of cancer cells and tumor volume in the rat model of pancreatic cancer. In vitro, it was found that BA inhibited the protein level and phosphorylation level of AKT/STAT3 by mediating the expression of miR365/BTG2/IL-6. Like BA, miR-365 inhibitors also significantly inhibited cell viability and invasion ability, and inhibited the protein level and phosphorylation level of AKT/STAT3 by changing the expression of BTG2/IL-6, and their combination had a synergistic effect. CONCLUSION: BA inhibits AKT/STAT3 expression and phosphorylation by modulating miR-365/BTG2/IL-6 expression, and BA inhibits the progression of pancreatic cancer through the aforementioned mechanism. Tech Science Press 2023-06-27 /pmc/articles/PMC10319593/ /pubmed/37415745 http://dx.doi.org/10.32604/or.2023.026959 Text en © 2023 Li et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article LI, XIN JIANG, WENKAI LI, WANCHENG DONG, SHI DU, YAN ZHANG, HUI ZHOU, WENCE Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer |
title | Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer |
title_full | Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer |
title_fullStr | Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer |
title_full_unstemmed | Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer |
title_short | Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer |
title_sort | betulinic acid-mediating mirna-365 inhibited the progression of pancreatic cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319593/ https://www.ncbi.nlm.nih.gov/pubmed/37415745 http://dx.doi.org/10.32604/or.2023.026959 |
work_keys_str_mv | AT lixin betulinicacidmediatingmirna365inhibitedtheprogressionofpancreaticcancer AT jiangwenkai betulinicacidmediatingmirna365inhibitedtheprogressionofpancreaticcancer AT liwancheng betulinicacidmediatingmirna365inhibitedtheprogressionofpancreaticcancer AT dongshi betulinicacidmediatingmirna365inhibitedtheprogressionofpancreaticcancer AT duyan betulinicacidmediatingmirna365inhibitedtheprogressionofpancreaticcancer AT zhanghui betulinicacidmediatingmirna365inhibitedtheprogressionofpancreaticcancer AT zhouwence betulinicacidmediatingmirna365inhibitedtheprogressionofpancreaticcancer |