Cargando…
Predicting party switching through machine learning and open data
Parliament dynamics might seem erratic at times. Predicting future voting patterns could support policy design based on the simulation of voting scenarios. The availability of open data on legislative activities and machine learning tools might enable such prediction. In our paper, we provide eviden...
Autores principales: | Meneghetti, Nicolò, Pacini, Fabio, Biondi Dal Monte, Francesca, Cracchiolo, Marina, Rossi, Emanuele, Mazzoni, Alberto, Micera, Silvestro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319836/ https://www.ncbi.nlm.nih.gov/pubmed/37416469 http://dx.doi.org/10.1016/j.isci.2023.107098 |
Ejemplares similares
-
Giuliano Vanghetti and the innovation of “cineplastic operations”
por: Tropea, Peppino, et al.
Publicado: (2017) -
A machine learning framework to optimize optic nerve electrical stimulation for vision restoration
por: Romeni, Simone, et al.
Publicado: (2021) -
Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers
por: Tortora, Stefano, et al.
Publicado: (2020) -
Pre-Impact Fall Detection: Optimal Sensor Positioning Based on a Machine Learning Paradigm
por: Martelli, Dario, et al.
Publicado: (2014) -
Modelling the dynamics of two political parties in the presence of switching
por: Nyabadza, F., et al.
Publicado: (2016)