Cargando…

Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring

Current methods of in vivo imaging islet cell transplants for diabetes using magnetic resonance imaging (MRI) are limited by their low sensitivity. Simultaneous positron emission tomography (PET)/MRI has greater sensitivity and ability to visualize cell metabolism. However, this dual-modality tool c...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayat, Hasaan, Wang, Rui, Sun, Aixia, Mallett, Christiane L., Nigam, Saumya, Redman, Nathan, Bunn, Demarcus, Gjelaj, Elvira, Talebloo, Nazanin, Alessio, Adam, Moore, Anna, Zinn, Kurt, Wei, Guo-Wei, Fan, Jinda, Wang, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319838/
https://www.ncbi.nlm.nih.gov/pubmed/37416468
http://dx.doi.org/10.1016/j.isci.2023.107083
_version_ 1785068324027105280
author Hayat, Hasaan
Wang, Rui
Sun, Aixia
Mallett, Christiane L.
Nigam, Saumya
Redman, Nathan
Bunn, Demarcus
Gjelaj, Elvira
Talebloo, Nazanin
Alessio, Adam
Moore, Anna
Zinn, Kurt
Wei, Guo-Wei
Fan, Jinda
Wang, Ping
author_facet Hayat, Hasaan
Wang, Rui
Sun, Aixia
Mallett, Christiane L.
Nigam, Saumya
Redman, Nathan
Bunn, Demarcus
Gjelaj, Elvira
Talebloo, Nazanin
Alessio, Adam
Moore, Anna
Zinn, Kurt
Wei, Guo-Wei
Fan, Jinda
Wang, Ping
author_sort Hayat, Hasaan
collection PubMed
description Current methods of in vivo imaging islet cell transplants for diabetes using magnetic resonance imaging (MRI) are limited by their low sensitivity. Simultaneous positron emission tomography (PET)/MRI has greater sensitivity and ability to visualize cell metabolism. However, this dual-modality tool currently faces two major challenges for monitoring cells. Primarily, the dynamic conditions of PET such as signal decay and spatiotemporal change in radioactivity prevent accurate quantification of the transplanted cell number. In addition, selection bias from different radiologists renders human error in segmentation. This calls for the development of artificial intelligence algorithms for the automated analysis of PET/MRI of cell transplantations. Here, we combined K-means++ for segmentation with a convolutional neural network to predict radioactivity in cell-transplanted mouse models. This study provides a tool combining machine learning with a deep learning algorithm for monitoring islet cell transplantation through PET/MRI. It also unlocks a dynamic approach to automated segmentation and quantification of radioactivity in PET/MRI.
format Online
Article
Text
id pubmed-10319838
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103198382023-07-06 Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring Hayat, Hasaan Wang, Rui Sun, Aixia Mallett, Christiane L. Nigam, Saumya Redman, Nathan Bunn, Demarcus Gjelaj, Elvira Talebloo, Nazanin Alessio, Adam Moore, Anna Zinn, Kurt Wei, Guo-Wei Fan, Jinda Wang, Ping iScience Article Current methods of in vivo imaging islet cell transplants for diabetes using magnetic resonance imaging (MRI) are limited by their low sensitivity. Simultaneous positron emission tomography (PET)/MRI has greater sensitivity and ability to visualize cell metabolism. However, this dual-modality tool currently faces two major challenges for monitoring cells. Primarily, the dynamic conditions of PET such as signal decay and spatiotemporal change in radioactivity prevent accurate quantification of the transplanted cell number. In addition, selection bias from different radiologists renders human error in segmentation. This calls for the development of artificial intelligence algorithms for the automated analysis of PET/MRI of cell transplantations. Here, we combined K-means++ for segmentation with a convolutional neural network to predict radioactivity in cell-transplanted mouse models. This study provides a tool combining machine learning with a deep learning algorithm for monitoring islet cell transplantation through PET/MRI. It also unlocks a dynamic approach to automated segmentation and quantification of radioactivity in PET/MRI. Elsevier 2023-06-09 /pmc/articles/PMC10319838/ /pubmed/37416468 http://dx.doi.org/10.1016/j.isci.2023.107083 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Hayat, Hasaan
Wang, Rui
Sun, Aixia
Mallett, Christiane L.
Nigam, Saumya
Redman, Nathan
Bunn, Demarcus
Gjelaj, Elvira
Talebloo, Nazanin
Alessio, Adam
Moore, Anna
Zinn, Kurt
Wei, Guo-Wei
Fan, Jinda
Wang, Ping
Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring
title Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring
title_full Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring
title_fullStr Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring
title_full_unstemmed Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring
title_short Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring
title_sort deep learning-enabled quantification of simultaneous pet/mri for cell transplantation monitoring
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319838/
https://www.ncbi.nlm.nih.gov/pubmed/37416468
http://dx.doi.org/10.1016/j.isci.2023.107083
work_keys_str_mv AT hayathasaan deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT wangrui deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT sunaixia deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT mallettchristianel deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT nigamsaumya deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT redmannathan deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT bunndemarcus deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT gjelajelvira deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT talebloonazanin deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT alessioadam deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT mooreanna deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT zinnkurt deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT weiguowei deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT fanjinda deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring
AT wangping deeplearningenabledquantificationofsimultaneouspetmriforcelltransplantationmonitoring