Cargando…
Development and validation of an artificial intelligence model for the early classification of the aetiology of meningitis and encephalitis: a retrospective observational study
BACKGROUND: Early diagnosis and appropriate treatment are essential in meningitis and encephalitis management. We aimed to implement and verify an artificial intelligence (AI) model for early aetiological determination of patients with encephalitis and meningitis, and identify important variables in...
Autores principales: | Choi, Bo Kyu, Choi, Young Jo, Sung, MinDong, Ha, WooSeok, Chu, Min Kyung, Kim, Won-Joo, Heo, Kyoung, Kim, Kyung Min, Park, Yu Rang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319989/ https://www.ncbi.nlm.nih.gov/pubmed/37415843 http://dx.doi.org/10.1016/j.eclinm.2023.102051 |
Ejemplares similares
-
Applying Artificial Intelligence for Diagnostic Classification of Korean Autism Spectrum Disorder
por: Choi, Eun Soo, et al.
Publicado: (2020) -
Diagnostic performance of artificial intelligence approved for adults for the interpretation of pediatric chest radiographs
por: Shin, Hyun Joo, et al.
Publicado: (2022) -
Development of a Deep-Learning-Based Artificial Intelligence Tool for Differential Diagnosis between Dry and Neovascular Age-Related Macular Degeneration
por: Heo, Tae-Young, et al.
Publicado: (2020) -
Three-dimensional label-free morphology of CD8 + T cells as a sepsis biomarker
por: Sung, MinDong, et al.
Publicado: (2023) -
High-throughput sequencing for the aetiologic identification of viral encephalitis, meningoencephalitis, and meningitis. A narrative review and clinical appraisal
por: Zanella, M.-C., et al.
Publicado: (2019)