Cargando…
A certified de-identification system for all clinical text documents for information extraction at scale
OBJECTIVES: Clinical notes are a veritable treasure trove of information on a patient’s disease progression, medical history, and treatment plans, yet are locked in secured databases accessible for research only after extensive ethics review. Removing personally identifying and protected health info...
Autores principales: | Radhakrishnan, Lakshmi, Schenk, Gundolf, Muenzen, Kathleen, Oskotsky, Boris, Ashouri Choshali, Habibeh, Plunkett, Thomas, Israni, Sharat, Butte, Atul J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320112/ https://www.ncbi.nlm.nih.gov/pubmed/37416449 http://dx.doi.org/10.1093/jamiaopen/ooad045 |
Ejemplares similares
-
Protected Health Information filter (Philter): accurately and securely de-identifying free-text clinical notes
por: Norgeot, Beau, et al.
Publicado: (2020) -
PatientExploreR: an extensible application for dynamic visualization of patient clinical history from electronic health records in the OMOP common data model
por: Glicksberg, Benjamin S, et al.
Publicado: (2019) -
ROMOP: a light-weight R package for interfacing with OMOP-formatted electronic health record data
por: Glicksberg, Benjamin S, et al.
Publicado: (2019) -
OnTheFly: a tool for automated document-based text annotation, data linking and network generation
por: Pavlopoulos, Georgios A., et al.
Publicado: (2009) -
Systematic identification of ACE2 expression modulators reveals cardiomyopathy as a risk factor for mortality in COVID-19 patients
por: Kaur, Navchetan, et al.
Publicado: (2022)