Cargando…
ChemMaps.com v2.0: exploring the environmental chemical universe
Access to computationally based visualization tools to navigate chemical space has become more important due to the increasing size and diversity of publicly accessible databases, associated compendiums of high-throughput screening (HTS) results, and other descriptor and effects data. However, appli...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320154/ https://www.ncbi.nlm.nih.gov/pubmed/37194699 http://dx.doi.org/10.1093/nar/gkad380 |
Sumario: | Access to computationally based visualization tools to navigate chemical space has become more important due to the increasing size and diversity of publicly accessible databases, associated compendiums of high-throughput screening (HTS) results, and other descriptor and effects data. However, application of these techniques requires advanced programming skills that are beyond the capabilities of many stakeholders. Here we report the development of the second version of the ChemMaps.com webserver (https://sandbox.ntp.niehs.nih.gov/chemmaps/) focused on environmental chemical space. The chemical space of ChemMaps.com v2.0, released in 2022, now includes approximately one million environmental chemicals from the EPA Distributed Structure-Searchable Toxicity (DSSTox) inventory. ChemMaps.com v2.0 incorporates mapping of HTS assay data from the U.S. federal Tox21 research collaboration program, which includes results from around 2000 assays tested on up to 10 000 chemicals. As a case example, we showcased chemical space navigation for Perfluorooctanoic Acid (PFOA), part of the Per- and polyfluoroalkyl substances (PFAS) chemical family, which are of significant concern for their potential effects on human health and the environment. |
---|