Cargando…
DDMut: predicting effects of mutations on protein stability using deep learning
Understanding the effects of mutations on protein stability is crucial for variant interpretation and prioritisation, protein engineering, and biotechnology. Despite significant efforts, community assessments of predictive tools have highlighted ongoing limitations, including computational time, low...
Autores principales: | Zhou, Yunzhuo, Pan, Qisheng, Pires, Douglas E V, Rodrigues, Carlos H M, Ascher, David B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320186/ https://www.ncbi.nlm.nih.gov/pubmed/37283042 http://dx.doi.org/10.1093/nar/gkad472 |
Ejemplares similares
-
DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability
por: Rodrigues, Carlos HM, et al.
Publicado: (2018) -
Kinact: a computational approach for predicting activating missense mutations in protein kinases
por: Rodrigues, Carlos HM, et al.
Publicado: (2018) -
mCSM-membrane: predicting the effects of mutations on transmembrane proteins
por: Pires, Douglas E V, et al.
Publicado: (2020) -
mmCSM-PPI: predicting the effects of multiple point mutations on protein–protein interactions
por: Rodrigues, Carlos H M, et al.
Publicado: (2021) -
mCSM-PPI2: predicting the effects of mutations on protein–protein interactions
por: Rodrigues, Carlos H M, et al.
Publicado: (2019)