Cargando…
Transitions in cognitive evolution
The evolutionary history of animal cognition appears to involve a few major transitions: major changes that opened up new phylogenetic possibilities for cognition. Here, we review and contrast current transitional accounts of cognitive evolution. We discuss how an important feature of an evolutionar...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320343/ https://www.ncbi.nlm.nih.gov/pubmed/37403503 http://dx.doi.org/10.1098/rspb.2023.0671 |
_version_ | 1785068433280335872 |
---|---|
author | Barron, Andrew B. Halina, Marta Klein, Colin |
author_facet | Barron, Andrew B. Halina, Marta Klein, Colin |
author_sort | Barron, Andrew B. |
collection | PubMed |
description | The evolutionary history of animal cognition appears to involve a few major transitions: major changes that opened up new phylogenetic possibilities for cognition. Here, we review and contrast current transitional accounts of cognitive evolution. We discuss how an important feature of an evolutionary transition should be that it changes what is evolvable, so that the possible phenotypic spaces before and after a transition are different. We develop an account of cognitive evolution that focuses on how selection might act on the computational architecture of nervous systems. Selection for operational efficiency or robustness can drive changes in computational architecture that then make new types of cognition evolvable. We propose five major transitions in the evolution of animal nervous systems. Each of these gave rise to a different type of computational architecture that changed the evolvability of a lineage and allowed the evolution of new cognitive capacities. Transitional accounts have value in that they allow a big-picture perspective of macroevolution by focusing on changes that have had major consequences. For cognitive evolution, however, we argue it is most useful to focus on evolutionary changes to the nervous system that changed what is evolvable, rather than to focus on specific cognitive capacities. |
format | Online Article Text |
id | pubmed-10320343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-103203432023-07-06 Transitions in cognitive evolution Barron, Andrew B. Halina, Marta Klein, Colin Proc Biol Sci Review Articles The evolutionary history of animal cognition appears to involve a few major transitions: major changes that opened up new phylogenetic possibilities for cognition. Here, we review and contrast current transitional accounts of cognitive evolution. We discuss how an important feature of an evolutionary transition should be that it changes what is evolvable, so that the possible phenotypic spaces before and after a transition are different. We develop an account of cognitive evolution that focuses on how selection might act on the computational architecture of nervous systems. Selection for operational efficiency or robustness can drive changes in computational architecture that then make new types of cognition evolvable. We propose five major transitions in the evolution of animal nervous systems. Each of these gave rise to a different type of computational architecture that changed the evolvability of a lineage and allowed the evolution of new cognitive capacities. Transitional accounts have value in that they allow a big-picture perspective of macroevolution by focusing on changes that have had major consequences. For cognitive evolution, however, we argue it is most useful to focus on evolutionary changes to the nervous system that changed what is evolvable, rather than to focus on specific cognitive capacities. The Royal Society 2023-07-12 2023-07-05 /pmc/articles/PMC10320343/ /pubmed/37403503 http://dx.doi.org/10.1098/rspb.2023.0671 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Review Articles Barron, Andrew B. Halina, Marta Klein, Colin Transitions in cognitive evolution |
title | Transitions in cognitive evolution |
title_full | Transitions in cognitive evolution |
title_fullStr | Transitions in cognitive evolution |
title_full_unstemmed | Transitions in cognitive evolution |
title_short | Transitions in cognitive evolution |
title_sort | transitions in cognitive evolution |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320343/ https://www.ncbi.nlm.nih.gov/pubmed/37403503 http://dx.doi.org/10.1098/rspb.2023.0671 |
work_keys_str_mv | AT barronandrewb transitionsincognitiveevolution AT halinamarta transitionsincognitiveevolution AT kleincolin transitionsincognitiveevolution |