Cargando…
Differential pairing of transmembrane domain GxxxG dimerization motifs defines two HLA-DR MHC class II conformers
MHC class II molecules function to present exogenous antigen-derived peptides to CD4 T cells to both drive T cell activation and to provide signals back into the class II antigen-presenting cell. Previous work established the presence of multiple GxxxG dimerization motifs within the transmembrane do...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320510/ https://www.ncbi.nlm.nih.gov/pubmed/37247758 http://dx.doi.org/10.1016/j.jbc.2023.104869 |
Sumario: | MHC class II molecules function to present exogenous antigen-derived peptides to CD4 T cells to both drive T cell activation and to provide signals back into the class II antigen-presenting cell. Previous work established the presence of multiple GxxxG dimerization motifs within the transmembrane domains of MHC class II α and β chains across a wide range of species and revealed a role for differential GxxxG motif pairing in the formation of two discrete mouse class II conformers with distinct functional properties (i.e., M1-and M2-paired I-A(k) class II). Biochemical and mutagenesis studies detailed herein extend this model to human class II by identifying an anti-HLA-DR mAb (Tü36) that selectively binds M1-paired HLA-DR molecules. Analysis of the HLA-DR allele reactivity of the Tü36 mAb helped define other HLA-DR residues involved in mAb binding. In silico modeling of both TM domain interactions and whole protein structure is consistent with the outcome of biochemical/mutagenesis studies and provides insight into the possible structural differences between the two HLA-DR conformers. Cholesterol depletion studies indicate a role for cholesterol-rich membrane domains in the formation/maintenance of Tü36 mAb reactive DR molecules. Finally, phylogenetic analysis of the amino acid sequences of Tü36-reactive HLA-DR β chains reveals a unique pattern of both Tü36 mAb reactivity and key amino acid polymorphisms. In total, these studies bring the paradigm M1/M2-paired MHC class II molecules to the human HLA-DR molecule and suggest that the functional differences between these conformers defined in mouse class II extend to the human immune system. |
---|